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ABSTRACT 
 
Consequences of the next geomagnetic field collapse, concomitant with a magnetic polarity 
reversal or excursion, have been greatly underestimated as based upon a widely-accepted, but 
physically-impossible geoscience paradigm. The underlying causes of geomagnetic field collapse 
are inexplicable in that flawed paradigm wherein geomagnetic field production is assumed to be 
produced in the Earth’s fluid core. Here I review the causes and consequences of geomagnetic field 
collapse in terms of a new geoscience paradigm, called Whole-Earth Decompression Dynamics, 
specifically focusing on nuclear fission georeactor generation of the geomagnetic field and the 
intimate connection between its energy production and the much greater stored energy of 
protoplanetary compression. The nuclear georeactor is subject to a staggering range and variety of 
potential instabilities. Yet, its natural self-control mechanism allows stable operation without 
geomagnetic reversals for times longer than 20 million years. Geomagnetic reversals and 
excursions occur when georeactor sub-shell convection is disrupted. Disrupted sub-shell 
convection can occur due to (1) major trauma to Earth such as an asteroid collision or (2) change in 
the charge particle flux from the sun or change in the ring current either of which can induce 
electrical current into the georeactor via the geomagnetic field causing ohmic-heating that can 
potentially disrupt sub-shell convection. Further, humans could deliberately or unintentionally 
disrupt sub-shell convection by disrupting the charge-particle environment across portions of the 
geomagnetic field by nuclear detonations or by heating the ionosphere with focused 
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electromagnetic radiation. The use of electromagnetic pulse weapons is potentially far more 
devastating to humanity than previously imagined, and should be prohibited. During the next 
polarity reversal or excursion, increased volcanic activity may be expected in areas fed by 
georeactor heat, such as the East African Rift System, Hawaii, Iceland, and Yellowstone in the 
USA. One potentially great risk is triggering the eruption of the Yellowstone super-volcano. 
 

 
Keywords: Magnetic reversals, corona ejections, electrical transmission networks, GPS blackouts, 

communications disruptions, solar wind, geomagnetic storms. 
 

1. INTRODUCTION 
 
The solar wind, a fully-ionized, ~106°K plasma 
consisting of electrons, protons, alpha particles, 
and (considerably less-abundant) heavy ions, 
streams outward from the solar corona [1-3]. The 
geomagnetic field deflects the solar wind safely 
away from Earth’s surface, shielding our planet 
from this charged-particle onslaught [4,5]. 
Massive corona ejections sometimes overwhelm 
the geomagnetic shield and induce damaging 
electric currents into metal conductors on the 
surface, posing particular risks to electrical 
transmission networks [6-9]. These brief 
glimpses prefigure the much-greater 
consequences expected during a geomagnetic 
polarity reversal or excursion. Loss of that 
shielding, during the next geomagnetic polarity 
reversal, will potentially have devastating 
consequences for our highly integrated, 
technology-based infrastructure, as abstracted 
from [10] and quoted from [11]: “Widespread 
communications disruptions, GPS blackouts, 
satellite failures, loss of electrical power, loss of 
electric-transmission control, electrical equipment 
damage, fires, electrocution, environmental 
degradation, refrigeration disruptions, food 
shortages, starvation and concomitant anarchy, 
potable water shortages, financial systems shut-
down, fuel delivery disruptions, loss of ozone and 
increased skin cancers, cardiac deaths, and 
dementia. This list is not exhaustive. It is likely 
that a geomagnetic field collapse would cause 
much hardship and suffering, and potentially 
reverse more than two centuries of technological 
infrastructure development”. 

 
Global and national security concerns, such as in 
the above quotation, tend to focus solely on 
increases of the charged particle assault on 
Earth resulting from loss of geomagnetic 
shielding during reversals. Numerous scientists 
and non-scientists, e.g. [12-19], have drawn 
attention to instances from the geologic past 
when previous magnetic reversals and 
excursions appear to be associated with grand-
scale geological phenomena. Examples of these 

past associations include continent 
fragmentation, large igneous extrusions, ocean 
heating and the potentially its involvement in ice 
age formation, and concomitant adverse 
consequences on biota, including major species 
extinction events. The risk of such major solid-
Earth geological disruptions occurring during the 
next geomagnetic reversal is rarely, if ever, 
mentioned as the underlying geophysical basis is 
inexplicable in the current widely-discussed 
geoscience paradigms whose basis originated 80 
years ago, namely, plate tectonics theory and 
geomagnetic field generation in Earth’s fluid 
core. 
 

Here I review the implications of a new 
geoscience paradigm [20-46] which affords a 
logical foundation for understanding how 
naturally occurring geomagnetic reversals and 
excursions in the past led to major solid-Earth 
disruptions, and in the future might trigger major 
volcanic events, including possibly super-volcano 
eruptions. I also review the possibility that human 
assaults on Earth’s natural processes might 
trigger collapse of the geomagnetic field. 
Examples of these anthropogenic activities that 
might cause geomagnetic-collapse potentially 
include, heating the ionosphere with focused 
electromagnetic radiation [47-49] and detonating 
nuclear explosions to generate an 
electromagnetic pulse [50-52]. Consequently, 
use of electromagnetic pulse weapons is 
potentially far more devastating to humanity than 
previously imagined, and should be prohibited.  
 

2. BACKGROUND 
 

In 1755, Kant [53] set forth a hypothesis on the 
origin of the sun and planets that was modified 
by Laplace [54] in 1796. Laplace’s nebula 
hypothesis is the forerunner of the modern 
protoplanetary theory of planet formation, which 
attracted scientific attention until it became 
unfashionable by the early 1960s [55-58]. 
 

In 1897, Chamberlain [59] set forth the 
fundamentally different hypothesis of planetary 
formation by the accumulation of small bodies 
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that was modified by Moulton [60] in 1900 and 
became the Chamberlin-Moulton planetesimal 
theory of planetary formation [61]. Beginning in 
1963, the planetesimal theory became the basis 
of computational models [62-65] which 
comprised a paradigm that collectively is 
sometimes referred to as the standard theory of 
solar system formation [66,67]. Although popular, 
in instances the models were based upon 
unjustified ad hoc assumptions, such as whole-
planet melting and the idea of a magma ocean  
[68,69]. 
 
In 1906, Oldham discovered Earth’s fluid core 
[70]. In 1936, Lehmann conceived of the inner 
core to explain seismic observations [71]. In 
1939, Elsasser proposed that the geomagnetic 
field is generated within Earth’s fluid core [72]. In 
1940, Birch explained the inner-core composition 
as being partially crystallized iron metal [73]. 
These concepts, with the addition of plate 
tectonics [74,75], became crucial elements of the 
foundation of the currently popular Earth-science 
paradigm. In 1979, I published in the 
Proceedings of the Royal Society of London the 
fundamentally different, logically-derived 
explanation of the inner-core consisting of fully 
crystallized nickel silicide [27] which led step-
wise to a new understanding of planetary 
formation, geomagnetic field generation, 
geodynamics, and geology. 
 
In a series of publications, I set forth a new Solar 
System planetary formation paradigm [20-26]. 
That indivisible paradigm provides compelling 
evidence that the observed differences in 
Terrestrial-planet compositions, as well as the 
asteroid belt, can be understood as (1) 
consequences of protoplanetary planet formation 
combined with (2) consequences of the 
thermonuclear ignition of the sun. Further, I set 
forth a new geoscience paradigm, called Whole-
Earth Decompression Dynamics, which follows 
logically and causally from the combination of (1) 
and (2) above [20,27-46]. That indivisible 
paradigm explains virtually all deep-Earth and 
surface geological and geophysical observations, 
including composition of the inner core, fluid 
core, and lower mantle [27-29,31,32,39], 
separation of the continents and observed ocean 
floor topography [35], without fictitious super-
continent cycles [44] and without physically-
impossible mantle convection [39], nuclear 
georeactor geomagnetic field generation [37,42], 
georeactor-fueled volcanism characterized by 
high 3He/4He ratios [33], origin of mountains 
characterized by folding [40], origin of fjords and 

the primary initiation of submarine canyons [43], 
mechanism for heat emplacement at crustal base 
[36], and two fundamentally new energy sources 
– georeactor nuclear fission energy and the 
much more powerful stored energy of 
protoplanetary compression [24,42]. 
 
In a series of publications [20,23,24,30,31, 
33,37,42,46,76,77], I demonstrated the feasibility 
of a Terracentric nuclear fission reactor, called 
the georeactor, as the energy source and 
production mechanism for generating the 
geomagnetic field, shown schematically in Fig. 1. 
 
Paleomagnetic evidence indicates the existence 
of several periods of non-reversed geomagnetic 
polarity that have lasted longer than 20 million 
years [78,79]. Consideration of the circum- 
stances necessary for maintaining georeactor 
stability over such long durations of time leads to 
a new understanding of how geomagnetic field 
collapse is connected logically and causally to 
major solid-Earth disruptions. 
 

For a nuclear fission reactor to exist at the center 
of the Earth, all of the following conditions must 
be met [42]: 
 

 There must originally have been a 
substantial quantity of uranium within 
Earth’s core. 

 There must be a natural mechanism for 
concentrating the uranium. 

 The isotopic composition of the uranium                
at the onset of fission must be appropriate 
to sustain a nuclear fission chain             
reaction. 

 The reactor must be able to breed a 
sufficient quantity of fissile nuclides to 
permit operation over the lifetime of Earth 
to the present. 

 There must be a natural mechanism for the 
removal of fission products. 

 There must be a natural mechanism for 
removing heat from the reactor. 

 There must be a natural mechanism to 
regulate reactor power level. 

 The location of the reactor must be such 
as to provide containment and prevent 
meltdown.   

 

As described in detail [42], each of the above 
conditions is fulfilled for Herndon’s nuclear fission 
georeactor at the center of Earth, and not fulfilled 
for other, later, putative ‘georeactors’ assumed to 
be located elsewhere in Earth’s deep interior 
[80,81]. 
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Fig. 1. Earth’s nuclear fission georeactor (inset) shown in relation to the major parts of Earth. The georeactor at the center is one ten-millionth the 
mass of Earth’s fluid core. The georeactor sub-shell, consisting of nuclear decay and fission products, is a liquid or slurry, situated between the 

nuclear-fission heat source and inner-core heat sink, which assures stable convection that is necessary for sustained geomagnetic field 
production by convection-driven dynamo action in the georeactor sub-shell [23,31,37]. Reproduced from [11]. 

 



 
 
 
 

Herndon; JGEESI, 24(9): 60-76, 2020; Article no.JGEESI.65087 
 
 

 
64 

 

Paleomagnetic evidence indicates that the 
geomagnetic field was being produced at least 
4.2 billion years ago, just a few hundred million 
years after Earth’s formation [82]. Moreover, the 
intensity of the geomagnetic field over geologic 
time has been more-or-less constant, typically 
within a factor of two, except during reversals or 
excursions [83-85]. Operational stability of the 
nuclear fission georeactor is critical for its 
continued existence into the present. 
Understanding the factors involved in maintaining 
georeactor stability allows logical deduction of 
the nature of its operation. 
 

One result to come from nuclear georeactor 
numerical simulations, made using the SAS2 
analysis sequence contained in the SCALE Code 
Package from Oak Ridge National Laboratory 
[86] that was developed over a period of three 
decades and extensively validated against 
isotopic analyses of commercial reactor fuels 
[87-91], was this [33,46,92]: For a given initial 
amount of georeactor uranium at the time of 
Earth’s formation, there must exist a relatively 
narrow range of average georeactor operating 
power levels. If the average operating power is 
above an upper-critical level, the uranium fuel will 
be consumed at rates that will lead to georeactor 
demise before the present time. Perhaps that 
happened to planet Venus that currently has no 
internally generated magnetic field [93]. If the 
average operating power is below a lower-critical 
level, insufficient fuel breeding will take place 
resulting in georeactor shut-down before the 
present time, which in principle could have 
occurred anytime during the past two billion 
years. 
 

Although reversals of the geomagnetic field have 
occurred numerous times [94,95], there are 
periods when the geomagnetic field has 
maintained the same polarity for periods longer 
than 20 million years [78,96]. Clearly, there exists 
a natural mechanism capable of maintaining 
extremely stable georeactor operation in the face 
of its constantly variable uranium fuel 
composition caused by the following: 
 

 The two main isotopes of uranium, 
235

U 
and 238U, naturally decay at different 
rates. 

 Nuclear fission further alters the isotopic 
composition by fission and by breeding 
fissionable nuclides. 

 Depending upon circumstances, the 
nuclear fission chain reaction can 
progress at different rates ranging from 
very slow to runaway fast. 

 The accumulation of fission products, 
which contain reactor poisons, can slow 
and can even halt the nuclear fission 
chain reaction. 

 
All of these variability-creating potentialities occur 
simultaneously in the georeactor. 
 
The georeactor, and all planetary and satellite 
nuclear reactors [23,24], have these 
circumstances in common which make possible 
planetocentric nuclear fission reactor operation: 
 

 Uranium is the densest naturally 
occurring nuclide at planetocentric 
pressures. 

 Fission products are markedly less 
dense than uranium at planetocentric 
pressures. 

 Micro-gravitational potential exists in the 
planetocentric environment. 

 
As illustrated schematically in Fig. 2, uranium, 
being the densest substance, settles at Earth’s 
center, called the georeactor sub-core. The 
fission products and products of radioactive 
decay, being less dense, separate from the 
georeactor sub-core and form the georeactor 
sub-shell. 
 

3. GEOREACTOR   STABILITY       
CONDITIONS 

 
In the micro-gravity environment at the center of 
Earth, georeactor heat production that is too 
energetic will cause actinide sub-core 
disassembly, mixing actinide elements with 
neutron-absorbers of the nuclear waste sub-
shell, quenching the nuclear fission chain 
reaction. But as actinide elements begin to settle 
out of the mix, the nuclear fission chain reaction 
will restart, ultimately establishing a balance, a 
dynamic equilibrium between heat production 
and actinide settling-out, a self-regulation control 
mechanism [23]. The implication is that much of 
the uranium is constrained to the nuclear waste 
sub-shell where it is kept well mixed with neutron 
absorbers. Consequently, nuclear fission only 
occurs in the uranium that settles out into the 
sub-core. 

 
The natural configuration of the georeactor is 
ideal for heat transport by thermal convection. 
Heat produced in the georeactor’s nuclear sub-
core heats the matter at the base of the 
georeactor’s nuclear waste sub-shell causing it to 
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expand, becoming less dense. The less dense 
‘parcel’ of bottom matter floats to the top of the 
sub-shell where it contacts the massive inner 
core heat-sink and loses its extra heat, densifies, 
and sinks. The nickel silicide inner core [27,29] 
heat-sink is surrounded by an even more 
massive heat-sink, the fluid iron alloy core, which 
helps to ensure the existence of an adverse 
temperature gradient in the georeactor sub-shell, 
a necessary condition for thermal convection 
[97]. 
 
Thermal convection in the nuclear waste sub-
shell not only is a crucial component for 
maintaining georeactor thermal balance, but it is 
also the mechanism for producing the internally-
generated magnetic field of planets and their 
larger satellites. The convection-driven 
circulation of charged-particle-producing nuclear 
material in the sub-shell, twisted by planetary 
rotation, I posit [23,24,37,42], is the basis for 
internally-generated magnetic field production by 
self-sustaining dynamo-action [72,98,99]. 
 
4. GEOREACTOR EVIDENCE 
 
As noted by Rao [100], a nuclear reactor at the 
core of the Earth is “a solution to the riddles of 
relative abundances of helium isotopes and to 
geomagnetic field variability”. The helium riddle 
referred to by Rao [100] is this: Since 
measurements were first made in the 1970s, the 
3He/4He ratio determined in volcanic basalts 
typically ranged from 4 to 49 times the same ratio 
measured in atmospheric helium [101-105]. The 
riddle is that there was no deep-Earth 
mechanism known for producing 

3
He in the 

requisite quantities, so mantle-mixing 
computational models were made based upon ad 
hoc assumptions [106-109]. The measured 
basaltic 

3
He/

4
He ratios, however, provided the 

first compelling evidence of nuclear georeactor 
existence. 
 
Initially, I made calculations using Fermi’s 
nuclear reactor theory [110] to demonstrate the 
feasibility of a Terracentric nuclear fission reactor 
[20,30,31], which provided no information on 
fission products. Oak Ridge National Laboratory 
georeactor numerical simulations [33,46], 
however, demonstrated that the georeactor 
would produce helium in precisely the range of 
3
He/

4
He observed in volcanic basalts, as shown 

in Fig. 3. This is not only the solution to the 
above riddle, but is powerful independent 
evidence for georeactor existence. 

In the 1930s, Fermi and Pauli [111-113] 
discussed the possible existence of a nearly 
massless particle, later called the neutrino, that 
was not experimentally detected until 1956 
[114,115]. In 1998 Raghavan et al. [116] 
demonstrated the feasibility of using antineutrino 
spectroscopy to measure uranium and thorium 
within the Earth. After learning about the 
georeactor in 2002, Raghavan [117] showed that 
the antineutrino spectrum resulting from nuclear 
fission has a higher energy component than from 
radioactive decay thus in principle permitting 
georeactor detection. 
 
Raghavan’s article [117] stimulated discussions 
worldwide [118-121]. The two operational deep-
Earth antineutrino detectors, at Kamioka, Japan 
[122] and at Grand Sasso, Italy [123], to date 
have not only failed to refute georeactor nuclear 
fission, but at a 95% confidence level, have 
measured georeactor energy production of 3.7 
and 2.4 terawatts, respectively. Interestingly, the 
energy production levels used in the Oak Ridge 
georeactor calculations ranged from 3 to 6 
terawatts [33]. 
 

5. GEOMAGNETIC FIELD DISRUPTIONS 
 
Earth’s georeactor, as I deduced from the 
properties of matter and described above, if left 
undisturbed is capable of an extreme degree of 
stability, as indicated by periods of non-reversed 
geomagnetic polarity lasting longer than 20 
million years [78,79]. But more-frequent 
geomagnetic polarity reversals (Fig. 4) do occur, 
and are indicative of external events that disrupt 
convection in the georeactor sub-shell. 
 
Disruption of georeactor sub-shell convection 
inevitably leads to disruption of geomagnetic field 
production. Upon re-establishing sub-shell 
convection after disruption, the geomagnetic field 
would be re-established either in the same or 
reverse direction. 
  
There are two principal, natural means by which 
disruption of convection in the georeactor sub-
shell can occur as a result of the relatively small 
georeactor mass: 
 

(1) Trauma to the Earth, such as a large 
meteorite collision [124,125], could in 
principle disrupt convection in the sub-shell 
of the georeactor, which has a mass just 
about one-ten-millionth that of the Earth’s 
core [42].  
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(2) Abrupt changes in the charge particle flux 
from the sun and/or changes in Earth’s ring 
current system [126,127] that interacts with 
the geomagnetic field necessarily induces 
electrical current into the georeactor via 
the geomagnetic field, which causes ohmic 
heating in the georeactor sub-shell that 
can potentially disrupt sub-shell convection 
[42]. 

 
The relatively small mass of the georeactor also 
means that in principle humans could 
accidentally or purposefully induce sub-shell 
convection-disruption which might potentially 
collapse the geomagnetic field. Detonation of 
nuclear explosives above the Earth to cause an 
electromagnetic pulse (EMP) [128] might not only 
momentarily distort the geomagnetic field, but 
potentially could induce electrical current into the 
georeactor by altering the natural charged 
particle flux across the geomagnetic field. A 
similar risk is posed by heating the ionosphere 
with focused electromagnetic radiation [11]. 
 
6. SUB-SHELL CONVECTION   

DISRUPTION CONSEQUENCES 
 
Collapse of thermal convection in the georeactor 
sub-shell can lead to abrupt settling-out of 
uranium from the reactor-poison sub-shell 
environment, which can lead to a period of 
uncontrolled nuclear fission chain reactions 
occurring before the dynamic self-regulation 
balance between heat production and actinide 
settling-out re-establishes itself. The burst of 
excess fissionogenic energy production by sub-
shell convection disruption, concurrent with 
geomagnetic polar reversals and excursions, in 
principle could trigger far greater energy release 
from the stored energy of protoplanetary 
compression by replacing some of the lost heat 
of protoplanetary compression [21, 24]. 
 
I have disclosed a new, complete, self-consistent 
paradigm that describes our planet’s 
composition, structure, geodynamics, surface 
geology, and energy sources that follow in a 
logical and causally related way from Earth’s 
origin as a Jupiter-like gas giant by condensing, 
i.e. raining-out, from within a giant gaseous 
protoplanet followed by removal of primordial 
gases and ices during the thermonuclear ignition 
of the sun [20,21,24,27,30-36,39-41,43-45]. 
 
The weight of ~300 Earth-masses of primordial 
gases and ices compressed the rocky portion of 
Earth to about two-thirds its present diameter. 

Stripped of those gases and ices during the 
thermonuclear ignition of the sun, the reduced-
diameter Earth, encased by an unbroken crustal 
shell, contained an extremely powerful energy 
source, the protoplanetary energy of 
compression. Utilization of this powerful 
potential-energy source for driving whole-Earth 
decompression, however, necessitates replacing 
the lost heat of protoplanetary compression. 
Georeactor nuclear fission energy, although 
insufficient to drive whole-Earth decompression, 
can serve to replace the lost heat of 
protoplanetary compression [21,35]. 
 
To understand by analogy: Georeactor output 
energy acts as the input signal of a great 
planetary-scale power amplifier, the output of 
which causes whole-Earth decompression 
events. Thus, one may understand 
mechanistically how a burst of excess 
fissionogenic energy production from sub-shell 
convection disruption, associated with 
geomagnetic field collapse, can also be 
associated in a causally-related manner with 
major decompression events. 
 
The geoscience literature is replete with 
observations that seem to associate geological 
phenomena with geomagnetic reversals and 
excursions, including the following: 
  
 Continent fragmentation or attempts [129-

131], 
 Massive volcanism [132-136], 
 Water level variations [137,138], 
 Ocean heating and potentially its 

involvement in ice age formation [139-144], 
and 

 Major species extinction events [15,145-
148]. 

 
In each of the above instances, no logical, 
causally-related basis could be previously 
described as geomagnetic-field production was 
incorrectly attributed to convection-driven 
dynamo action in the fluid core, a mass about 
one-third that of Earth. Thermal convection in the 
Earth’s core is physically impossible for the 
following reasons [39]: (1) Compression of the 
core by the weight above makes the density 
gradient too great for thermal convection, and (2) 
the core is wrapped in a thermally-insulating 
blanket which limits heat-loss thus preventing 
maintenance of an adverse temperature gradient 
necessary for sustained thermal convection in 
the core. In the georeactor sub-shell, on the 
other hand, these limitations do not exist. 
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Fig. 5. presents a record of recent magnetic 
polarity reversals. The last polarity reversal event 
occurred about 786,000 years ago and may have 
occurred during a time span as short as 13±6 
years [149], a time-frame consistent with other 
observations of rapid geomagnetic reversals  
[150,151]. 
 
No one knows when the next georeactor sub-
shell convection collapse will occur, but recent 
movements of the North Magnetic Dip Pole [152] 
might imply sooner rather than later [11]. In 
addition to the devastating consequences on our 
technologically-based infrastructure, described 
above, it is of interest to speculate on the 
geological consequences of the next georeactor 
sub-shell convection collapse. 
 
Over Earth’s lifetime, georeactor fuel has been 
decreasing due to fuel burn-up and natural 
radioactive decay. Consequently, the amount of 
potential flare-up upon collapse of georeactor 
sub-shell convection will not be nearly as great 

as in earlier times. The amount of surface-effects 
from whole-Earth decompression will certainly be 
much less than in earlier times. One might, 
however, expect increased geological activity 
from volcanic areas fed by georeactor energy, 
such as the East African Rift System, Hawaiian 
Islands, Iceland, and Yellowstone among others 
[105]. Of particularly grave concern is whether a 
major pulse in georeactor energy might trigger 
eruption of the Yellowstone potential-super-
volcano [153-156] whose georeactor-supplied 
heat is strongly indicated by high 3He/4He ratios 
[157,158]. 
 
At some yet-unknown point in time, presumably 
as a consequence of nuclear-fission fuel burning 
and radioactive decay, the isotopic composition 
of georeactor-uranium will be unable to sustain 
nuclear fission chain reactions, marking the 
permanent demise of the georeactor and the 
geomagnetic field [33]. At that point in time, 
humanity would be well-advised to work together 
for common survival. 

 

 
 

Fig. 2. Schematic representation of the georeactor, not to scale. Planetary rotation and fluid 
motions are indicated separately; their resultant motion is not shown. Stable convection with 
adverse temperature gradient and heat removal is expected. Scale in km. Reproduced from 

[11] 
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Fig. 3. Oak Ridge National Laboratory georeactor simulation data calculated at energies of 3 
and 5 terawatts compared to measured helium ratios in oceanic basalts. Data from [33]. 

Reproduced from [11] 
 

 
 

Fig. 4. Geomagnetic polarity since the middle Jurassic. Dark areas denote periods where the 
polarity matches today's polarity, while light areas denote periods where that polarity is 

reversed. Based upon published data [94,95]. Reproduced from [11] 
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Fig. 5. Recent geomagnetic polarity from rock-magnetism investigations. Dark areas denote 
periods where the polarity matches today's polarity, while light areas denote periods where 
that polarity is reversed. Based upon an image by the U. S. Geological Survey. Reproduced 

from [11] 
 
7. CONCLUSIONS 

 
Consequences of the next geomagnetic field 
collapse, concomitant with a magnetic polarity 
reversal or excursion, have been greatly 
underestimated as based upon a popular, but 
flawed geoscience paradigm. The potential risks 
to our technology-based infrastructure from the 
charged-particle onslaught during geomagnetic 
field collapse are recognized [11]. Other potential 
dangers have gone essentially unmentioned, 
even though observations of some major 
geological events in the past seem to have been 
associated with geomagnetic reversals or 
excursions. The underlying causes of 
geomagnetic field collapse are inexplicable in 
that flawed paradigm wherein geomagnetic field 
production is assumed to be produced in the 
Earth’s fluid core.  

 
Beginning with a new concept for the 
composition of Earth’s inner core, published in 
Proceedings of the Royal Society of London in 
1979, I progressed step-by-step on a logical 
progression of understanding which ultimately 
led to a new indivisible Solar System planetary 
formation paradigm and a new geoscience 
paradigm, called Whole-Earth Decompression 
Dynamics. Here I reviewed the causes and 
consequences of geomagnetic field collapse in 
terms of that new geoscience paradigm, 
specifically focusing on nuclear fission 
georeactor generation of the geomagnetic field 
and the intimate connection between its energy 

production and the much greater stored energy 
of protoplanetary compression. 
The nuclear georeactor, which has a mass about 
one ten-millionth that of Earth’s core, consists of 
two parts, the sub-core where nuclear fission 
takes place and the convecting sub-shell that 
contains fissile material and reactor poisons, i.e., 
fission fragments and radioactive decay 
products. The georeactor self-control mechanism 
consists of a dynamic balance between sub-core 
nuclear fission and the settling-out of fissile 
material into the sub-core. 
 

The nuclear georeactor is subject to a staggering 
range and variety of potential instabilities. Yet, its 
self-control mechanism allows stable operation 
without geomagnetic reversals for times longer 
than 20 million years. Geomagnetic reversals 
and excursions occur when georeactor sub-shell 
convection is disrupted. 
 

Here, I disclosed that disrupted sub-shell 
convection can occur due to (1) major trauma to 
Earth such as an asteroid collision or (2) change 
in the charge particle flux from the sun or change 
in the ring current either of which can induce 
electrical current into the georeactor via the 
geomagnetic field causing ohmic-heating that 
can potentially disrupt sub-shell convection. 
Further, humans could deliberately or 
unintentionally disrupt sub-shell convection by 
disrupting the charge-particle environment 
across portions of the geomagnetic field by 
nuclear detonations or by heating the ionosphere 
with focused electromagnetic radiation. The use 
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of electromagnetic pulse weapons is potentially 
far more devastating to humanity than previously 
imagined, and should be prohibited. 

 
Disruption of stable georeactor sub-shell 
convection leads to uncontrolled settling-out of 
fissile material causing a nuclear flare-up, a burst 
of georeactor energy. That excess energy, 
channeled to Earth’s surface can potentially 
cause a variety of geological phenomena and/or 
can replace the lost heat of protoplanetary 
compression resulting in major geological events 
powered by the stored energy of protoplanetary 
compression. The latter explains the basis of 
associations between geophysical events and 
polarity reversals and excursions. 

 
During the next polarity reversal or excursion, 
increased volcanic activity may be expected in 
areas fed by georeactor heat, such as the East 
African Rift System, Hawaii, Iceland, and 
Yellowstone in the USA. One potentially great 
risk is triggering the eruption of the Yellowstone 
super-volcano. 

 
At some yet-unknown point in time, the 
georeactor fuel will have been consumed, sub-
shell convection will collapse, never to re-
establish, thus marking the end of the 
geomagnetic field forever. Perhaps Venus has 
already arrived at that point. 
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