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ABSTRACT 
 

Convection in Earth’s georeactor sub-shell is responsible for generating the geomagnetic field and 
for maintaining the critical balances necessary for stable sub-core nuclear fission. External factors 
capable of disrupting sub-shell convection are trauma at Earth’s surface, for example by meteorite 
impact, and electrical energy transfer via Faraday’s electromagnetic induction into the georeactor 
by changes in the solar wind or in the magnetospheric ring current. Reduced sub-shell convection 
not only leads to decreased geomagnetic field intensity, but to increased uranium settling out into 
the sub-core where it undergoes uncontrolled nuclear fission until sub-shell convection is 
reestablished. Periods of uncontrolled georeactor nuclear fission are responsible for causing 
geophysical phenomena at Earth’s surface that are associated with geomagnetic reversals and 
excursions. Anticipated consequences of sub-shell convection collapse include increases in 
volcanic activity, increases in the number and intensity of earthquakes, warming of the oceans, and 
diminishment of atmospheric convection resulting in global warming at the surface. The most 
worrisome potentiality is triggering the eruption of the Yellowstone super-volcano. Changes in solar 
wind flux, too small to cause geomagnetic field collapse, however, may cause increases in 
earthquakes and volcanic eruptions. The understanding described here potentially provides a basis 
for the development of earthquake and volcanic eruption prediction methodologies. 
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1. INTRODUCTION 
 

Tantalizing reports in the literature seem to 
suggest a possible connection between 
geomagnetic reversals and major geophysical 
events, species extinctions, continent             
separation, basalt floods, and sea-level                 
changes [1-4]. Until recently, however,                      
making sense of the fragmented and              
incomplete records of geophysical events in the 
Earth’s past, has been impossible. Why? 
Because there has been widespread 
misunderstanding of the interrelationships 
between Earth’s origin, composition, 
geomagnetic field generation, and geodynamic                             
behavior. 
 

Scientists tend to take at face value long-
standing geo-topical ideas that originated in the 
1930s-1960s as distinct entities, and rarely 
question their validity, although their origins may 
have changed in light of subsequent discoveries. 
Moreover, geoscientists are typically specialists 
trained in depth in only one narrow area of               
Earth science. Consequently, their perception of 
the Earth as a whole is akin to the descriptions of 
an elephant by blind men, according to an 
ancient Indian parable. In that parable a number 
of blind men attempt to describe an elephant as 
they touch particular parts of its body. The blind 
man who touched only its leg said, “It is                      
like a pillar.” Each proffered a different 
description based upon the body-part touched 
(Fig. 1). 

Scientific specialization is advantageous if the 
underlying science is sound, securely anchored 
to the properties and behavior of matter and 
radiation. But, until recently, Earth science has 
been neither sound nor securely anchored. 
Individual components of the Earth, such as the 
fluid core, were examined by narrowly focused 
specialists figuratively emulating the blind men in 
the above ancient parable. Over a period of more 
than forty years I have advanced theoretical 
considerations that provide a sound basis for 
understanding. 
 

My discoveries, logically and causally related, 
include recognizing that Earth’s early formation 
as a Jupiter-like gas giant makes it possible to 
derive virtually all geological and geodynamic 
behavior of our planet, including origin of 
continents and oceans, ocean floor topography, 
origin of mountains characterized by folding, 
primary initiation of fjords and submarine 
canyons, internal Earth compositions, two 
previously unanticipated potentially variable 
energy sources including a Terracentric nuclear 
fission reactor (known as the georeactor), origin 
of the geomagnetic field and the reasons for 
geomagnetic field variability, origination of 
petroleum and natural gas deposits, particulate 
pollution as the main cause of global warming, 
connections between Earth’s origin and 
similarities and differences of other planets, 
thermonuclear ignition of stars, and why the 
multitude of galaxies display just a few prominent 
patterns of luminous stars [5-40]. 

 

 
 

Fig. 1. Blind men, from the ancient Indian parable, attempting to describe an elephant based 
upon body-part examination shown with major body-parts of “elephant” earth 
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In the following I describe, from the properties 
and behavior of matter, the conditions in nature 
which make possible stable nuclear georeactor 
operation, hence stable geomagnetic field 
generation. Next I describe circumstances in 
nature which can disrupt stable georeactor 
operation, leading to excursions or reversals of 
the geomagnetic field. Then I describe potential 
geodynamic events which might arise as 
consequences of disrupted georeactor operation. 
 

2. STABILITY MECHANISMS OF 
EARTH’S TERRACENTRIC 
GEOREACTOR 

 

Earth’s internal components are layered on the 
basis of density. Uranium, being the densest 
substance, resides at the planet’s center and is 
capable of sustained nuclear fission chain 
reactions. In other words, uranium in that location 
acts as a nuclear reactor. As noted previously 
[36] and in a review article [26], I described with 
specificity the background, basis, feasibility, 
structure, evidence, and geophysical implications 
of a naturally occurring Terracentric nuclear 
fission georeactor. For a nuclear fission reactor 
to exist at the center of the Earth, all of the 
following conditions that must be met are met: 
 

 Originally there was a substantial quantity 
of uranium within Earth’s core. 

 There is a natural mechanism for 
concentrating the uranium at the Earth’s 
center. 

 The isotopic composition of the uranium at 
the onset of fission was appropriate to 
sustain a nuclear fission chain reaction. 

 The reactor is able to breed a sufficient 
quantity of fissile nuclides to permit 
operation over the lifetime of Earth to the 
present. 

 There is a natural mechanism for the 
removal of fission products. 

 There is a natural mechanism for removing 
heat from the reactor. 

 There is a natural mechanism to regulate 
reactor power level. 

 The location at Earth’s center provides 
containment and prevents meltdown. 

 There are logical, causally related 
mechanisms that account for geomagnetic 
reversals and excursions. 

 

Earth’s nuclear fission georeactor has one 
unique feature that separates it from all other 
putative planetary energy sources, including 
radioactive decay. Nuclear fission is an energy 

source that not only is potentially variable, but it 
can even stop and restart. Nuclear fission can be 
slowed or stopped by separating the uranium 
components from one another or by mixing into 
the uranium neutron absorbers, sometimes 
called reactor poisons. 
 

The left portion of Fig. 2 is a schematic 
representation of the georeactor, located at the 
center of Earth in a microgravity environment. 
The georeactor consists of two parts, the nuclear 
fission sub-core consisting of uranium that settles 
out of the georeactor sub-shell. The sub-shell 
consists of a repository for uranium, fission 
products, and other impurities. The neutron 
absorbers in the sub-shell prevent nuclear fission 
from occurring in that portion of the georeactor. 
The right side of Fig. 2 represents the balances 
that must be maintained for stable georeactor 
operation. 
 
Heat produced by nuclear fission chain reactions 
in the uranium sub-core causes thermal 
convection in the sub-shell. This convection is 
not only responsible for generating the 
geomagnetic field by dynamo action involving 
Earth’s rotation, but is the key to maintaining 
balances necessary for stable georeactor 
operation. 

 
Convection efficiently transfers sub-core 
produced heat to Earth’s inner core, a massive 
heat-sink that is surrounded by an even more 
massive heat-sink, its fluid core, which removes 
the georeactor produced heat and maintains the 
adverse temperature gradient (top cooler than 
bottom) necessary for stable convection [41]. 
Sub-shell stirring by convection in this 
microgravity region is the principal mechanism 
for maintaining georeactor stable operation. 

 
Sub-core heat produced by nuclear fission keeps 
most of the uranium repository mixed with 
neutron absorbers, preventing fission in the sub-
shell. Uranium settles out from the convecting 
neutron-absorbing mixture in the sub-shell to 
form the sub-core where nuclear fission takes 
place. Reduction in sub-core generated heat, 
caused by uranium burn-up, decreases 
convective stirring which allows additional 
uranium to settle out from the sub-shell. This is a 
self-regulating mechanism. 

 
Although details are obscure, there must exist 
some material exchange between sub-core and 
sub-shell, not only to remove fission                    
product reactor poisons from the sub-core, but to  
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Fig. 2. Schematic representation of Earth’s georeactor, not to scale, with non-resultant 
planetary and fluid motions indicated separately (left) and (right) representations of the 

balances that must be maintained for stable georeactor operation 
 

 
 

Fig. 3. Geomagnetic polarity since the middle Jurassic. Dark areas denote periods where the 
polarity matches today's polarity, while light areas denote periods where that polarity is 

reversed. From published data [44,45] 
 
exchange nuclear fuel bred in the sub-core with 
the uranium repository in the convecting sub- 
shell. The exchange rate is presently unknown 
and, presumably, decreases as the uranium 
inventory is consumed [12]. 
 
The geomagnetic field has been stable, without 
reversals, for periods longer than 20 million years 
[42,43]. More frequent polarity reversals and 
excursions do occur (Fig. 3) and are indicative of 
external events that disrupt convection in the 
georeactor sub-shell. 
 

3. INSTABILITY MECHANISMS OF 
EARTH’S TERRACENTRIC NUCLEAR 
GEOREACTOR  

 

The georeactor mass is about one ten-millionth 
that of Earth’s fluid core, consequently, major 
trauma at Earth’s surface, such as a meteorite 

impact, could disrupt sub-shell convection in the 
georeactor. 
 
Sub-shell convection could also be disrupted by 
energy from the solar wind transferred via the 
geomagnetic field into the georeactor by 
Faraday’s law of electromagnetic induction [46]. 
A simple apparatus, illustrated schematically in 
Fig. 4, demonstrates the principle of 
electromagnetic induction. 
 
When the switch in Fig. 4 is closed, the 
galvanometer displays only a momentary pulse. 
When the switch is opened, the galvanometer 
displays a momentary pulse in the opposite 
direction. Only a changing electrical current can 
be transferred through electromagnetic induction. 
The blue boxes in this figure illustrate 
components in nature that correspond to the 
schematic electrical components indicated.  
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Fig. 4. Schematic diagram of an apparatus for demonstrating the principle of electromagnetic 

induction and their corresponding components in nature 
 
The solar wind comprises an electrical current of 
charged particles that stream from the Sun. If the 
solar wind were constant, no electrical current 
would be induced into the georeactor. 
Exceptionally large changes in the solar wind or 
in the ring current of charged particles trapped in 
Earth’s magnetosphere, however, will cause 
electrical current to be induced into the 
georeactor sub-shell producing ohmic heating, 
diminishing sub-shell convection, and potentially 
leading to geomagnetic field collapse with 
concomitant magnetic excursion or reversal. 
 

4. CONSEQUENCES OF DISRUPTED 
GEOREACTOR SUB-SHELL 
CONVECTION 

 
Sustained sub-shell convection, as discussed 
above, regulates georeactor activity including its 
energy production. What happens when 
convection is disrupted by trauma to the Earth or 
through induced electrical current from changes 
in the solar wind or in the magnetospheric ring 
current (Fig. 5)? 

 
Disrupted sub-shell convection allows individual 
sub-shell components to settle out, to layer 
based upon their respective densities. Uranium, 
being densest, accumulates at Earth’s center, 

the location of the sub-core, resulting in 
uncontrolled nuclear fission chain reactions 
before ultimately reestablishing sub-shell 
convection. Energy release from the runaway 
nuclear fission potentially has major geophysical 
ramifications and provides a logical, causally 
related basis for understanding the association of 
geodynamic phenomena with geomagnetic 
reversals. 
 

Georeactor-produced heat, transferred through 
Earth’s inner core to its fluid core, is either 
channeled directly to Earth’s surface or replaces 
a portion of the lost heat of planetary 
compression which facilitates whole-Earth 
decompression dynamics (WEDD) [14,15,37]. 
 

Heat Channeling: Thermal structures, 
sometimes called mantle plumes, lie beneath the 
volcanic islands of Hawaii and Iceland whose 
basalt contains traces of helium with high 
3He/4He ratios, relative to that in air, the 
signature of georeactor production [12]. As 
imaged by seismic tomography, these thermal 
structures extend all the way to the top of the 
fluid core [47,48], further reinforcing their 
georeactor-heat origin. Similarly, high 3He/4He 
ratios are measured in lavas associated with the 
East African Rift System [49] and the 
Yellowstone volcanic complex in the United 
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States [50]. One potential consequence of the 
runaway nuclear fission spike, resulting from 
sub-shell convection-disruption, is to trigger 
volcanic eruptions, including the Yellowstone 
super-volcano. 
 

WEDD Facilitation: Protoplanetary energy of 
compression, from Earth’s formation as a Jupiter-
like gas giant, remained trapped in the rocky 
portion of Earth (compressed to about 2/3 of 
present diameter) after primordial gases and ices 
were stripped away. Decompression 
necessitates replacing the lost heat of 
protoplanetary compression. Georeactor nuclear 
fission energy replaces the lost heat of 
compression thereby facilitating planetary 
decompression. As described by whole-Earth 
decompression dynamics (WEDD) [14,37], 
virtually all geodynamics is the consequence of 
Earth’s decompression, including continent 
splitting with ocean basin development [15], 
formation of mountain ranges characterized by 
folding [23], and primary initiation of fjords and 
submarine canyons [51]. 
 

Two examples serve to illustrate some 
geophysical consequences of runaway 

georeactor nuclear fission resulting from 
diminished sub-shell convection during 
geomagnetic reversals. 

 
The Permian-Triassic species extinction that 
occurred 250 million years ago [52] was 
associated with a geomagnetic polarity reversal 
[53-55], massive basalt extrusion in Siberia 
containing traces of helium with the high 3He/4He 
ratios [56] that are characteristic of georeactor 
production [12], and a drop in mean global sea 
level (Fig. 6) indicative of new ocean basin 
opening. 

 
The Cretaceous-Tertiary species extinction that 
occurred 65 million years ago [52] was 
associated with a geomagnetic polarity reversal 
[63-65], massive basalt extrusion in Western 
India containing traces of helium with the high 
3He/4He ratios [66] characteristic of georeactor 
production [12], and a drop in mean global sea 
level (Fig. 6) indicative of new ocean basin 
opening. Might the meteorite impact event that 
some people think killed the dinosaurs [67] have 
caused the geomagnetic polarity reversal by 
disrupting sub-shell convection? 

 

 
 

Fig. 5. Schematic representation of the ring current system in earth’s magnetosphere 
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Fig. 6. Spikes in seawater levels (red and blue) appear to correlate with spikes in species 
genus extinction intensity (green), and they correlate as well with boundaries of major 

divisions of geological time, abbreviated at top of graph. For details and data, see [1,52,57-62] 
 

Over geologic time, not all geomagnetic 
reversals were as spectacular as these two 
examples. Some might have been relatively 
benign, while others might have had devastating 
geophysical consequences, presumably when 
Earth was less decompressed, its uranium 
repository was greater, and sub-shell disruption 
occurred more quickly and/or more completely. 
What might be expected to occur during the next 
geomagnetic reversal or excursion? 
 

5. SPECULATIONS ON THE NEXT 
GEOMAGNETIC FIELD COLLAPSE 

 

The time of the next georeactor sub-shell 
collapse is unknown. However, recent dip-pole 
movements [68] and decreasing geomagnetic 
intensity [69,70] suggest that it “might be sooner 
rather than later” [33]. It is useful, therefore, to 
point out the following unanticipated, potentially 
adverse geophysical consequences: 
 

 Volcanic regions heated directly by 
georeactor produced heat, characterized 
by high 3He/4He ratios, may expect 
increased eruptions during sub-shell 
collapse. These include the East African 
Rift System, Hawaii, Iceland, and 
Yellowstone. Of these, Yellowstone poses 
the greatest potential danger as it is 
thought to be a super-volcano in the 
making [71-74]. 

 

 Earthquakes will increase in number and 
intensity as uncontrolled nuclear fission 
occurs during sub-shell collapse and 

facilitates whole-Earth decompression. 
Volcanic activity along surface-plate 
margins likewise will increase. 

 
 Heat emplaced at the base of the rigid 

crust, due to compressing ongoing 
decompressing mantle material (called 
mantle decompression thermal tsunami) 
[16] will heat the oceans and melt polar 
ice. 

 
 Increased atmospheric particulates from 

volcanic ash and atmospheric water 
condensate will inhibit atmospheric 
convection, thereby limiting surface                 
heat loss, and causing global warming 
[32].  

 
These geophysical consequences are in addition 
to the harm that collapse of the geomagnetic field 
will inflict on our technologically-based 
infrastructure, as described by Williams [75]: 
“Widespread communications disruptions, GPS 
blackouts, satellite failures, loss of electrical 
power, loss of electric-transmission control, 
electrical equipment damage, fires, electrocution, 
environmental degradation, refrigeration 
disruptions, food shortages, starvation and 
concomitant anarchy, potable water shortages, 
financial systems shut-down, fuel delivery 
disruptions, loss of ozone and increased skin 
cancers, cardiac deaths, and dementia. This list 
is not exhaustive. It is likely that a geomagnetic 
field collapse would cause much hardship and 
suffering, and potentially reverse more than two 
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centuries of technological infrastructure 
development.” 
 

6. VARIATIONS OF SOLAR WIND 
INFLUENCE ON EARTHQUAKES AND 
VOLCANIC ERUPTIONS 

 

One thrust of this Short Communication pertains 
to potential disasters attendant with geomagnetic 
field collapse due to sub-shell convection-
disruption caused by electromagnetic induction 
from major changes in the solar wind flux. 
Changes in georeactor heat output are 
potentially amplified and affect the surface by 
release of the stored energy of protoplanetary 
compression. The principles involved may apply 
to less-severe changes in the solar wind flux, 
which potentially provide an explanation for 
observed increases in earthquakes [76-78] and 
volcanic eruptions [79-81] that are associated 
with increased solar activity. This explanation 
therefore may provide a legitimate basis for the 
development of earthquake and volcanic eruption 
prediction methodologies. 
 

7. CONCLUSIONS 
 

Convection in Earth’s georeactor sub-shell is 
responsible for generating the geomagnetic field 
and for maintaining the critical balances 
necessary for stable sub-core nuclear fission. 
External factors capable of disrupting sub-shell 
convection are trauma at Earth’s surface, for 
example by meteorite impact, and electrical 
energy transferred via Faraday’s electromagnetic 
induction into the georeactor by changes in the 
solar wind or in the magnetospheric ring current. 
 

Reduced sub-shell convection not only leads to 
decreased geomagnetic field intensity, but to 
increased uranium settling out into the sub-core 
where it undergoes uncontrolled nuclear fission 
until sub-shell convection is reestablished. 
Periods of uncontrolled georeactor nuclear 
fission are responsible for causing geophysical 
phenomena at Earth’s surface that are 
associated with geomagnetic reversals and 
excursions. 
 
Anticipated consequences of sub-shell 
convection collapse include increases in volcanic 
activity, increases in the number and intensity of 
earthquakes, warming of the oceans, and 
diminishment of atmospheric convection resulting 
in global warming at the surface. The most 
serious potentiality is triggering the eruption of 
the Yellowstone super-volcano. 

Changes in solar wind flux, too small to cause 
geomagnetic field collapse, however, may cause 
increases in earthquakes and volcanic eruptions. 
The understanding described here potentially 
provides a basis for the development of 
earthquake and volcanic eruption prediction 
methodologies. 
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