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ABSTRACT 
 
The climate science community and the United Nations’ Intergovernmental Panel on Climate 
Change have misinformed world governments by failing to acknowledge tropospheric particulate 
geoengineering that has been ongoing with ever-increasing duration and intensity for decades, and 
by treating global warming solely as a radiation-balance issue, which has resulted in a seriously 
incomplete understanding of the fundamental factors that affect Earth’s surface temperature. Here 
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we review the consequences of tropospheric particulate heating by absorption of short- and long-
wave solar radiation and long-wave radiation from Earth’s surface. Generally, black carbon absorbs 
light over the entire solar spectrum; brown carbon absorbs near-UV wavelengths and, to a lesser 
extent, visible light; iron oxides are good absorbers, the most efficient being magnetite. Pyrogenic 
coal fly ash, both from coal burning and from tropospheric jet-spraying geoengineering (for military 
purposes and/or climate engineering), contains carbon and iron oxides, hematite and magnetite. 
The recently published climate-science paradigm shift discloses that the main cause of global 
warming is not carbon dioxide heat retention, but particulate pollution that absorbs radiation, heats 
the troposphere, and reduces the efficiency of atmospheric-convective heat removal from Earth’s 
surface. In addition to the World War II data, three other independent lines of supporting evidence 
are reviewed: (1) Passage overhead of the Mt. St. Helens volcanic plume; (2) Radiosonde and 
aethalometer investigations of Talukdar et al.; and, (3) convection suppression over the tropical 
North Atlantic caused by the Saharan-blown dust. The risks associated with the placement of 
aerosol particulates into the stratosphere, whether lofted naturally, inadvertently, or deliberately as 
proposed for solar radiation management, poses grave risks, including the destruction of 
atmospheric ozone. To solve global warming humanity must: (1) Abruptly halt tropospheric 
particulate geoengineering; (2) Trap particulate emissions from coal-fired industrial furnaces 
(especially in India and China) and from vehicle exhaust; and, (3) Reduce particulate-forming fuel 
additives. 
 

 
Keywords: Aerosol particulate heating; aerosol particulates; geoengineering; climate change; 

atmospheric convection; coal fly ash; particulate pollution; global warming. 
 
1. INTRODUCTION 
 
The idea that our planet is experiencing global 
warming due to anthropogenic carbon dioxide 
and other greenhouse gases has been 
hammered into public consciousness for three 
decades. There are good reasons to believe that 
political motives are driving much of the scientific 
work of the climate science community and the 
United Nations’ Intergovernmental Panel on 
Climate Change (IPCC) [1]. Real science, unlike 
politics, is all about telling the truth, truth that is 
securely anchored to the properties of matter and 
energy (radiation) [2,3]. However, the climate 
science community, including the IPCC [4], has 
failed to tell the truth by not considering or even 
mentioning the climate-affecting tropospheric 
particulate geoengineering that has been 
ongoing for decades and which has become a 
near-daily, near-global activity (Fig. 1). The 
failure to take into consideration the ongoing 
tropospheric particulate geoengineering 
compromises IPCC evaluations as well as the 
published work of numerous climate scientists, 
and calls into question whether or not political 
motivations are involved [5]. 
 
There are concerted efforts to deceive the 
scientific community and the public into believing 
that particulate trails, such as shown in Fig. 1 are 
ice-crystal ‘contrails’ from the moisture vapor in 
jet exhaust [6,7]. The U. S. Air Force produced 
Document AFD-0561013-001 to deceive the 

public about the aerial spraying, a section, 
entitled The Chemtrail Hoax, states: “There is no 
such thing as a ‘Chemtrail’ [a term some use to 
describe the aerial spraying] … Contrails [ice 
crystals from aircraft exhaust moisture] are safe 
and are a natural phenomenon. They pose no 
health hazard of any kind”  [7]. 

 
Retired U. S. Air Force Brig. General Charles 
Jones reportedly issued in part the following 
statement concerning observed trails in the sky 
[8]: “When people look up into the blue and see 
white trails paralleling and crisscrossing high in 
the sky little do they know that they are not 
seeing aircraft engine contrails, but instead they 
are witnessing a manmade climate engineering 
crisis facing all air breathing humans and animals 
on planet Earth.... Toxic atmospheric aerosols 
[are] used to alter weather patterns, creating 
droughts in some regions, deluges and floods in 
other locations and even extreme cold under 
other conditions....” 

 
Concerned citizens have taken numerous 
photographs showing that the particulate trails 
observed are physically inconsistent with being 
ice-crystal contrails [9-11]. Fig. 2 shows both the 
typically white trails, like those in Fig. 1, which 
are consistent with coal fly ash [10-13] and show 
much scattered light, and black trails, likely 
produced by carbon black (BC) which absorbs 
light much more efficiently with far less scatter. 
Ice crystal contrails are never black. One of us 
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(JMH) witnessed white trails beneath the cloud 
cover over Frankfurt, Germany, and black trails 
above the clouds, presumably to be out of sight.  
 
For more than three billion years, as long as life 
has existed on Earth, the surface of our planet 
has maintained a remarkably stable state of 
thermal equilibrium through the aggregate-effect 
of numerous natural processes, despite being 
bombarded by potentially variable solar radiation 
from above [14,15] and potentially variable 

planetary energy sources from below, including 
georeactor nuclear fission energy [16-19] and 
stored protoplanetary compression energy [20-
22]. Decades ago, considering the ever-
increasing scale of human activity, it might have 
been prudent to engage in open scientific 
debates and discussions to ascertain with 
reasonable certainty the nature and extent that 
human activities might be altering those natural 
processes. But, such objective, open inquiry 
never occurred.  

 

 
 

Fig. 1. Geoengineering particulate trails with photographers’ permission. Clockwise from 
upper left: Soddy-Daisy, Tennessee, USA (David Tulis); Reiat, Switzerland (Rogerio Camboim 

SA); Warrington, Cheshire, UK (Catherine Singleton); Alderney, UK looking toward France 
(Neil Howard); Luxembourg (Paul Berg); New York, New York, USA (Mementosis) 
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Fig. 2. Both white and black particulate trails above Danby, Vermont, an impossible 
combination for alleged ice-crystal ‘contrails’ 

 
Instead, in 1988 the IPCC was established, and 
in concert with various other governmental 
entities, such as the U. S. National Aeronautics 
and Space Administration (NASA), and 
presumably driven by political and/or financial 
motives [23], the IPCC convinced numerous 
political leaders that greenhouse gases, notably 
fossil-fuel produced carbon dioxide (CO2), were 
trapping heat that otherwise should have been 
released to space [4]. As the Cold War ended, 
climate change, also known as global warming, 
became the new global enemy. 
 
The science promulgated by the IPCC and the 
climate science community is seriously flawed, 
not only by its failure to consider all factors 
affecting climate (notably ongoing covert 
geoengineering), but also by the application of a 
seriously flawed investigatory-methodology that 
includes the use of assumption-based 
computational models that typically begin with a 
known end-result that is attained by cherry-
picking data and parameters [24]. Computational 
models, sometimes called simulations, are 
computer programs subject to the well-known 
dictum “garbage in, garbage out” [25]. 
 
As the noted atmospheric chemist and inventor 
of the electron capture detector James Lovelock 
noted [26]: “Gradually the world of science has 
evolved to the dangerous point where model-

building has precedence over observation and 
measurement, especially in Earth and life 
sciences. In certain ways modeling by scientists 
has become a threat to the foundation on which 
science has stood: the acceptance that nature is 
always the final arbiter and that a hypothesis 
must always be tested by experiment and 
observation in the real world.” 
 
Generally, to maintain stable surface 
temperatures over time, all of the heat received 
from the sun [14,15], as well as the heat brought 
to the surface from deep-Earth heat-sources [16-
22], must be released to space.  The climate 
science community treats global warming solely 
as a radiation-balance issue. Toward that end 
they define an artificial construct “radiative 
forcing” or “climate forcing” in units of Wm

-2
 

relative to 1750 Wm-2 as a means to represent 
the departure from zero-net radiation balance 
[27], which they presume is caused primarily by 
anthropogenic carbon dioxide and other 
greenhouse gases. While that approach provides 
a common means to express computer model 
results, it also leads to an incomplete 
understanding of all of the factors that affect 
Earth’s surface temperature, as we disclose in 
this review. 
 
Moreover, in instances there is a lack of 
understanding of fundamental processes that are 
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crucial to the problem of understanding the 
maintenance of Earth’s surface temperature. For 
example, many climate scientists (falsely) believe 
that particulate aerosols, including black carbon 
(BC), cool the Earth’s surface [28-36] or are 
uncertain whether aerosols cool or heat the Earth 
[37,38]. For example, Ramanathan and 
Carmichael [39] state: “...black carbon has 
opposing effects of adding energy to the 
atmosphere and reducing it at the surface.” 
Similarly, Andreae, Jones and Cox [28] state: 
“Atmospheric aerosols counteract the warming 
effects of anthropogenic greenhouse gases by 
an uncertain, but potentially large, amount.” 
 
Uncertainty as to whether aerosols result in 
cooling or warming hinders the ability to project 
future climate changes [40,41] and even hinders 
the ability to understand the fundamental factors 
responsible for maintaining surface temperatures 
in a range that makes life possible. 
 
Science progresses by questioning the 
correctness of popular paradigms, and through 
tedious efforts to place seemingly independent 
observations into a logical order in the mind so 
that causal relationships become evident and 
new understanding emerges [2]. In a series of 
publications we disclosed a fundamentally 
different understanding of the main cause of 
global warming [1,42-45]. The main cause of 
anthropogenic global warming is not carbon 
dioxide heat retention, but particulate pollution 
that heats the troposphere and reduces the 
efficiency of atmospheric-convective heat 
removal from Earth’s surface [1,42-45]. 

 
Rather than making grand, detailed, 
computational-models based upon the poorly 
understood complexities of climate science, a 
preferred approach, we suggest it is more fruitful 
to better understand the behavior of several 
specific factors that affect Earth’s climate. 
Toward that end, we review evidence related to 
the behavior and climate consequences of 
tropospheric particulate heating. 

 
2. TROPOSPHERIC PARTICULATE 

HEATING 
 
Solid and/or liquid particles, typically ≤ 10 µm 
across, in the troposphere originate from a 
variety of sources including moisture 
condensation [46],  incomplete biomass burning, 
combustion of fossil fuels, volcanic eruptions, 
wind-blown road debris, sand, sea salt, biogenic 

material [47] and, significantly, pyrogenic coal fly 
ash from unfiltered industrial exhaust [48-51] and 
geoengineering applications [10-13,52-54]. 
Tropospheric particulates have short 
atmospheric residence times ranging from days 
to a few weeks, but nevertheless have direct 
climate effects through their absorbing solar 
radiation and radiation from Earth’s surface, as 
well as indirect effects on cloud formation and 
associated microphysics [55-58]. 
 

When a light photon interacts with particulate 
matter, it is either reflected (scattered) or 
absorbed. Considerable efforts have been 
expended to obtain reflectance spectral data [59] 
because of their importance in remote imaging 
technology. Regrettably, there is a dearth of 
absorption spectral data as the climate science 
community has been slow to appreciate its 
importance. Recently, however, measurements 
of particulate-matter absorption spectra are 
beginning to be made and, although limited, for 
example, in spectral-wavelength, it is possible to 
make accurate non-quantitative generalizations. 
 
Aerosol particles interact with solar radiation by 
scattering (i.e. reflecting) or absorbing the 
radiation, both long-wave and short-wave. They 
become heated and subsequently transfer that 
heat to the atmosphere through molecular 
collisions [60,61]. The contribution of black 
carbon to atmospheric heating is widely 
recognized [39,60]. However, virtually all aerosol 
particles absorb solar radiation to some extent, 
including those that have a high proclivity to 
scatter radiation [62,63]. Quantifying aerosol 
absorption/scattering presents considerable 
uncertainties for many reasons including, for 
example, variations in particle size, surface 
topography, chemical/mineral composition, 
surface coatings, as well as differences in and 
lack of knowledge of relevant absorption spectra 
[64,65]. 
 

Most particulates found in the troposphere 
absorb solar energy to some extent from one or 
more portions of the wavelength spectrum [66-
72]. As Hunt noted [73]: “A dispersion of small 
absorbing particles forms an ideal system to 
collect radiant energy, transform it to heat, and 
efficiently transfer the heat to a surrounding 
fluid.... If the characteristic absorption length for 
light passing through the material comprising the 
particles is greater than the particle diameter, the 
entire volume of the particles is active as the 
absorber. When the particles have absorbed the 
sunlight and their temperature begins to rise they 
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quickly give up this heat to the surrounding 
gas....” 
 
The one generalization that can now be made is 
that virtually all tropospheric aerosol particulates, 
including cloud droplets and their aerosol 
components, absorb short- and long-wave solar 
radiation, and absorb long-wave radiation from 
Earth’s surface, thus becoming heated. 
Moreover, aerosols can modify cloud properties 
and suppress rainfall [74-77]. As Tao et al. [78] 
note: “Aerosols, and especially their effect on 
clouds and precipitation, are one of the key 
components of the climate system and the 
hydrological cycle. Yet the aerosol effect on 
clouds and precipitation remains poorly known.” 
 
In one series of experiments, Ramana et al. [79] 
measured relative heating rates in the lowest 3 
km of the atmosphere using vertically stacked 
multiple lightweight autonomous unmanned 
aerial vehicles and found in that instance that the 
“contribution of absorbing aerosols to the heating 
rate was an order of magnitude larger than the 
contribution of CO2 and one-third that of the 
water vapour.” 
  
Whereas the methodology utilized by the IPCC 
and climate science community has focused 
primarily on the problem of sun-Earth radiation 
balance and departures therefrom, our focus has 
been on understanding the processes involved in 
the disposition of absorbed heat, notably the 
consequences of particulate pollution on 
atmospheric convection, which we submit, is a 
primary mechanism for maintaining Earth’s 
habitable surface temperature [1,42-45]. 
 

2.1 Role of Carbon and Iron in Aerosol 
Heating 

 
Dark-colored particulates are efficient absorbers 
of solar radiation of which black carbon (BC), e.g. 
soot, absorbs light over the entire solar 
spectrum; brown carbon, e.g. soil humus, on the 
other hand, absorbs near-UV wavelengths and, 
to a lesser extent, visible light [80]. Carbon 
surface deposits on non-carbonaceous aerosols 
can enhance their solar radiation heat potential 
[81]. 
  
Iron is usually found in anthropogenic 
carbonaceous particles [82]. Iron-oxide minerals, 
although somewhat less efficient solar radiation 
absorbers than carbon, nevertheless are 
dominate among mineral radiation-absorbers. 
Alfaro et al. [83] measured light absorption in 

samples of desert dust at two wavelengths, 325 
nm (ultraviolet) and 660 nm (red light). They 
found for mineral dust from Niger, Tunisia, and 
China, sampled near their source and thus 
devoid of anthropogenic carbon contamination, 
iron-oxide was by far the greatest light absorbing 
substance with the amount of absorption being a 
linear function of iron oxide content. They further 
found that the absorption at 325 nm is about 6 
times greater than at 660 nm. In addition, Liu et 
al. [84] employed an “airborne laser-induced 
incandescence instrument” to measure the 
hematite content of the Saharan dust layer which 
is known to be heated by solar radiation [85,86]. 
 
Matsui et al. [50] discussed the relative 
importance of anthropogenic combustion iron 
and iron from mineral dust in aerosol heating, 
and noted that “magnetite [Fe3O4] is the most 
efficient short-wave absorber among iron oxides 
in the atmosphere.” Moteki et al. [51] found that 
the majority of aerosol iron oxide particles in East 
Asian continental atmospheric outflows are 
anthropogenic aggregated magnetite 
nanoparticles that, in addition to carbonaceous 
aerosols, are significant contributors to short-
wave atmospheric heating. Recent results 
indicate that the atmospheric burden of 
anthropogenic iron of pyrogenic origin is 8 times 
greater than previous estimates [50]. 
 
Yoshida et al. [87] note that there is a 
strong correlation between anthropogenic FeOx 
and BC particles in the East Asian continental 
outflow of anthropogenic origin. That is not 
surprising as pyrogenic coal fly ash, in addition to 
containing magnetite and other iron-oxides, 
contains carbon particles [88]. For a set of UK 
coal fly ash (CFA) samples, the hematite (Fe2O3) 
range was determined as 2.5 – 8.6 wt.%, the 
magnetite (Fe3O4) range as 0.8 – 4.1 wt.% [89]. 
The carbon content of coal fly ash by one 
estimate is 2 – 5 wt.% under optimum conditions, 
and 20 wt.% under non-optimum conditions [90]. 
Another investigation found the carbon content 
range of coal fly ash to be 2.7 – 14.5 wt.% [91]. 
One thing is clear from these data: Aerosolized 
coal fly ash efficiently absorbs solar radiation and 
heats the troposphere. 
  

2.2 Role of Forest Fires in Aerosol 
Heating 

 
The smoke and ash from forest fires uplifted into 
the troposphere comprises one class of aerosol 
particulates that contains black carbon, brown 
carbon and iron oxides [70,92]. Iron oxides in the 
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ash from forest fires can be converted at high 
temperatures to magnetite (Fe3O4) which is an 
even more efficient absorber of solar radiation 
[69]. The effect of forest-fire originated brown 
carbon aerosols on atmospheric heating likely 
has been underestimated [93]. Since 1999 there 
has been a four-fold increase in the particulates 
arising from forest fires in the United States [94], 
which to some extent appears to be one 
consequence of the now near-daily, near global 
aerosol particulate geoengineering [11]; 
corresponding increases have been noted 
worldwide [95-97]. In addition, fire increases 
surface heat, and reduces water-evaporation by 
damaging the canopy [98]. Moreover, forest fires 
have an “immediate and profound impact” on 
snow disappearance, earlier springtime melt, and 
lower summer stream flows [94]. 
 

2.3 Role of Coal Fly Ash in Aerosol 
Heating 

 

As the aerial spraying, like that shown in Fig. 1, 
became a near-daily activity in San Diego (USA), 
one of us (JMH) began a series of investigations 
aimed at determining the nature and composition 
of the aerosolized particulates being sprayed. 
Initially, comparison of Internet-posted 3-element 
rainwater analyses with corresponding laboratory 
water-extract analyses of a likely potential 
aerosol provided the first scientific forensic 
evidence that the main particulate-substance 
being jet-sprayed was consistent with the 
leaching-behavior of coal fly ash (CFA) [52]. 
Subsequently, comparing 11 similarly-analysed 
elements validated that forensic finding [13]. 
Additional consistency was demonstrated by 
comparing CFA analyses to 14 elements 
measured in air-filter trapped outdoor aerosol 
particles [10], and to 23 elements measured in 
aerosol particles brought down during a snowfall 
and released upon snow-melting [12,13]. 
 

Burning coal concentrates the harmful elements 
in the ash [99]. The heavy ash that is formed 
settles beneath the burner. The light ash, called 
coal fly ash (CFA), forms by condensing and 
accumulating in the hot gases above the burners. 
Coal fly ash escapes into the atmosphere from 
smokestacks in India and China, but is usually 
trapped and sequestered in Western nations 
[100,101]. 
 

The annual global production of CFA in 2013 
was estimated to be 600 million metric tons 

[102]. Coal fly ash is a cheap waste product that 
requires little additional processing for use as a 
jet-sprayed aerosol since its particles form in 
sizes ranging from 0.01 – 50 µm in diameter 
[103]. Except for its serious harm to human and 
environmental health [11,13,104-111], CFA in an 
ideal particulate for heating the troposphere 
through absorption of short-wave and long-wave 
radiation as CFA contains substantial quantities 
of the iron oxides, hematite and magnetite, as 
well as carbon [88-91]. 
 
3. DIURNAL TEMPERATURE RANGE 
 
The diurnal temperature range (DTR), the daily 
high temperature minus nightly low temperature, 
(Tmax – Tmin), when tracked over time provides a 
measure of climate change that is model-
independent. Moreover, greenhouse gases’ 
effects on long-wave radiation are equivalent 
during both day and night, and thus affect Tmax 
and Tmin equally. DTR data are therefore 
essentially independent of the direct radiative 
consequences of greenhouse gases [4,112]. 
Furthermore, greenhouse gases are transparent 
to incoming solar radiation [113]. Although the 
reduction in Tmax can be explained by sunlight 
being absorbed or scattered by particulates or by 
clouds, the increase in Tmin is inexplicable within 
the current IPCC understanding of climate 
science [4] which is dominated by radiation-
balance considerations. 
 
Diurnal temperature range (DTR) data are 
typically presented as averages over suitable 
increments of time for a large geographic area. 
Fig. 3 from Qu et al. [114] presents yearly DTR, 
Tmax and Tmin mean values over the continental 
USA throughout most of the 20th century and up 
to 2010. 

 
As shown in Fig. 3, Tmin increases at a greater 
rate than Tmax causing DTR to decrease over 
time, a phenomenon that is observed in many 
similar investigations [115-118] but not all [119]. 
The reduction in Tmax can be explained by 
sunlight being blocked by particulates or by 
clouds [117], however, the concomitant increase 
in Tmin is problematic within the radiation-balance 
paradigm practiced by the IPCC and climate 
science community. A good way to make 
advances in science, in instances such as this, is 
to ask the question: “What is wrong with this 
picture?” [3]. 
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Fig. 3.  Yearly DTR, Tmax and Tmin mean values over the continental USA. The red lines are 
linear regressions. From [45,114], (http://creativecommons.org/licenses/by-nc-nd/3.0/) 

 
4. EVIDENCE FROM WORLD WAR II 
 
Gottschalk [120,121] noticed a thermal peak 
coincident with World War II (WW2)  in a global 
temperature profile image on the front page of 
the January 19, 2017 New York Times. He 
applied sophisticated curve-fitting techniques to 8 
independent global temperature datasets from 
the U. S. National Oceanic and Atmospheric 
Administration (NOAA) and demonstrated that 
the WW2 peak is a robust feature. He concluded 
that the thermal peak “is a consequence of 
human activity during WW2” [120,121]. 
 
The conspicuous aspect of Gottschalk’s global-
warming results [120], shown by the black curves 
in Fig. 4, is that immediately after WW2 the 
global warming rapidly subsided. That behavior 
is inconsistent with CO2-caused global warming 
because CO2 persists in the atmosphere for 
decades [4,122]. CO2-caused global warming 
during WW2 can be further ruled out as Antarctic 
Law Dome Ice core data during the period 1936-
1952 show no significant increase in CO2 during 
the war years, 1939-1945 [123]. The evidence 
thus points to a feature other than CO2 for the 
WW2 climate event. 
 
One of us (JMH) realized that WW2 activities 
injected massive amounts of particulate matter 

into the troposphere from extensive military 
industrialization and vast munition detonations, 
including the demolition of entire cities, and their 
resulting debris and smoke. The implication is 
that the aerosolized pollution particulates trapped 
heat that otherwise should have been returned to 
space, and thus caused global warming at 
Earth’s surface [42] If particulate pollution caused 
the sudden rise in temperature, it would have 
subsided rapidly after hostilities ceased. Rapid 
cessation of WW2 global warming is thus 
understandable, since tropospheric pollution-
particulates typically fall to ground in days to 
weeks [55-58,124]. 
 
Fig. 4, from [42,120], shows relative-value, 
particulate-pollution proxies added to 
Gottschalk’s figure: Global coal production 
[125,126]; global crude oil production [126,127]; 
and, global aviation fuel consumption [126]. Each 
proxy dataset was normalized to its value at the 
date 1986, and anchored at 1986 to Gottschalk’s 
boldface, weighted average, relative global 
warming curve. The particulate-proxies track well 
with the 8 NOAA global datasets used by 
Gottschalk [42]. 
 
Following the end of WW2 hostilities, wartime 
aerosol particulates rapidly settled to ground 
[124], Earth radiated its excess trapped energy, 
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and global warming abruptly subsided for a brief 
time [42]. Soon, however, post-WW2 industrial 
growth, initially in Europe and Japan, and later in 
China, India, and the rest of Asia [128] increased 
worldwide aerosol particulate pollution and with it 
concomitant global warming [42]. The rapid non-
linear rise in these curves in recent decades 
presumably has been also accelerated by covert 
tropospheric aerosol geoengineering operations. 
 
From the evidence shown in Fig. 4, there is one 
inescapable conclusion: Aerosol particulate 
pollution, not carbon dioxide, is the main cause 
of anthropogenic global warming. That 
conclusion is not at all evident if you rely on the 
“radiation-balance” methodology and 
parametrized models so widely utilized. The 
concept that aerosol particulate pollution is the 
main cause of global warming thus constitutes a 
climate-science paradigm shift. 
 
In the desert cloudy days are usually cooler than 
non-cloudy days, while cloudy nights are typically 
warmer than non-cloudy nights. With that 
observation in mind, we now review the evidence 
of the principal mechanism responsible for 
aerosol particulate caused global warming. 
 
5. MECHANISM OF GLOBAL WARMING 

BY AEROSOLIZED PARTICULATES 
 
Aerosol particulates that become heated and 
transfer that heat to the surrounding atmosphere 
have been said to cause “changes in the 
atmospheric temperature structure” [129]. 
Published scientific papers rarely, if ever, 
mention of the consequences of such 
observations on atmospheric convection, and the 
concomitant surface-heat-transfer reduction that 
results from “changes in the atmospheric 
temperature structure” [4]. 
 
Indeed, convection is perhaps the most 
misunderstood natural process in Earth science. 
Hypothetical convection models of the Earth’s 
fluid core [130-133] and of the Earth’s mantle 
[134,135] continue to be produced, although 
sustained thermal convection in each instance 
has been shown to be physically impossible [16] 
thus necessitating a fundamentally different 
geoscience paradigm [17,20-22,136-138]. 
  
Convection in Earth’s troposphere is dynamically 
complex. Computational models, although 
simplistic, are mathematically complicated 
[139,140] and typically utilize parametrization-
based [141] assumption-simplification solutions 

of hydrodynamic equations [142,143]. Critical 
details of the actual physical process of 
convection may be thus obscured in climate-
science models. 
 
Chandrasekhar described convection in the 
following, easy-to-understand way [144]: The 
simplest example of thermally induced 
convection arises when a horizontal layer of fluid 
is heated from below and an adverse 
temperature gradient is maintained. The 
adjective ‘adverse’ is used to qualify the 
prevailing temperature gradient, since, on 
account of thermal expansion, the fluid at the 
bottom becomes lighter than the fluid at the top; 
and this is a top-heavy arrangement which is 
potentially unstable. Under these circumstances 
the fluid will try to redistribute itself to redress this 
weakness in its arrangement. This is how 
thermal convection originates: It represents the 
efforts of the fluid to restore to itself some degree 
of stability. 
  
To the best of our knowledge, consequences of 
the adverse temperature gradient, described by 
Chandrasekhar [144] have not been explicitly 
considered in either solid-Earth or tropospheric 
convection calculations. A simple classroom-
demonstration experiment, however, can provide 
critical insight for understanding how convection 
works, applicable to both tropospheric and Earth-
core convection [44]. 

 
As described recently [45]: “The convection 
classroom-demonstration experiment was 
conducted using a 4 liter beaked-beaker, nearly 
filled with distilled water to which celery seeds 
were added, and heated on a regulated hot 
plate. The celery seeds, dragged along by 
convective motions in the water, served as an 
indicator of convection. When stable convection 
was attained, a ceramic tile was placed atop the 
beaker to retard heat loss, thereby increasing the 
temperature at the top relative to that at the 
bottom, thus decreasing the adverse temperature 
gradient. 
 
Fig. 5, from [44], extracted from the video record 
[145], shows dramatic reduction in convection 
after placing the tile atop the beaker. In only 60 
seconds the number of celery seeds in motion, 
driven by convection, decreased markedly, 
demonstrating the principle that reducing the 
adverse temperature gradient decreases 
convection. That result is reasonable as zero 
adverse temperature gradient by definition is 
zero thermal convection.” 
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Fig. 4. Copy of Gottschalk’s fitted curves for eight NOAA data sets showing relative 
temperature profiles over time [120] to which are added proxies for particulate pollution. 

dashed line, land; light line, ocean; bold line, weighted average from [42] 
 

 
 
Fig. 5. From [44]. A beaker of water on a regulated hot plate with celery seeds pulled along by 

the fluid convection motions. Placing a ceramic tile atop the beaker a moment after T=0 
reduced heat-loss, effectively warming the upper solution’s temperature, thus lowering the 

adverse temperature gradient, and reducing convection, indicated by the decreased number of 
celery seeds in motion at T=60 sec 

 
Particulate matter in the troposphere, including 
the moisture droplets of clouds not only blocks 
sunlight, but absorbs radiation from both in-

coming solar radiation and from out-going 
terrestrial radiation. The heated particles transfer 
their heat to the surrounding atmosphere, 
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increasing its temperature and reducing the 
adverse temperature gradient relative to the 
surface. The reduction of the adverse 
temperature gradient, as demonstrated by the 
above classroom-demonstration, concomitantly 
reduces convective heat transport from Earth’s 
surface. 

 
6. EVIDENCE OF CONVECTION-DRIVEN 

SURFACE HEAT LOSS-REDUCTION 
 
The above discussion of the consequences of 
reduced tropospheric adverse temperature 
gradient is general, and pertains to global 
warming, regional warming, and to local 
warming. In the case of global warming, specific 
data on aerosol particulates might be available 
only for quite limited circumstances, such as the 
case of soot accumulation on museum bird 
specimens collected during the WW2 era [146]. 
However, the vast WW2 historical record, 
including film documentation, should leave no 
doubt that WW2-activity spiked the troposphere 
with vast amounts of particulate matter. 
Moreover, the particulate-proxies, shown in Fig. 
4, track well with the subsequent global warming 
record. 

 
In the case of WW2, global warming was inferred 
from an understanding of the manner by which 
aerosolized particulates affect convection. The 
diurnal temperature range (DTR) data (Fig. 3), 
suggest that, although aerosol particulates block 
some sunlight from reaching Earth’s surface 
[117], to explain the reduction in Tmax another 
process must account for the increase in Tmin. 
Data from the Mt. St. Helens 1980 volcanic 
eruption in Washington State (USA) [147] 
demonstrated that a short-term reduction in the 
adverse temperature gradient increased the Tmin 
of DTR data and provide an opportunity to 
assess the consequences of volcanic particulate 
injection into the troposphere [148]. 

 
As previously described [45]: As the volcanic 
plume passed overhead in the troposphere, 
daytime temperatures dropped as the sunlight 
was absorbed and scattered by the particulates; 
nighttime temperatures, however, increased, and 
for a few days thereafter remained elevated 
presumably due to aerosol dust that persisted for 
a few days before falling to ground [148]. The 
diurnal temperature range was significantly 
lessened by the plume, but almost completely 
recovered within two days [148]. These 
observations are consistent with (1) the Mt. St. 

Helens aerosol particulates in the plume 
absorbing LW radiation and becoming heated in 
the atmosphere overhead, (2) the transfer of that 
heat to the surrounding atmosphere by molecular 
collisions, (3) the lowering of the atmospheric 
adverse temperature gradient relative to the 
Earth’s surface, (4) the consequent reduction of 
atmospheric convection, and (5) concomitant 
reduction of convection-driven surface heat loss, 
which is evident by the increase in Tmin [1,42-44]. 
 

Because the IPCC and other climate scientists 
attempt to explain global warming by relying 
principally on the role of radiation transport, they 
are unable to explain the Mt. St. Helens’ data in a 
logical, causally related manner as indicated, for 
example, by the following illogical explanation: 
“at night the plume suppressed infrared cooling 
or produced infrared warming” [148]. 
 

By contrast, the Mt. Pinatubo eruption ejected 
large amounts of material into the stratosphere, 
where there is very little convection and little heat 
transport by convection, and where particulate 
matter can remain for months cooling the planet 
by blocking sunlight and increasing albedo 
[149,150]. 
 

The idea that tropospheric particulates reduce 
atmospheric convection received further support 
by the long-duration series of radiosonde and 
aethalometer investigations undertaken by 
Talukdar et al. [151]. Their investigations 
demonstrated that higher amounts of 
tropospheric black carbon (BC) aerosols can 
disturb the normal upward movement of moist air 
by heating up the atmosphere, resulting in a 
decrease in the atmospheric convection 
parameters associated with the increase in 
concentration of BC aerosols. 
 

Convection occurs throughout the troposphere, 
with differing degrees of scale, both 
geographically and altitudinally, and with various 
modifications caused by atmospheric circulation 
and lateral flow. Convection-efficiency in all 
instances is a function of the prevailing adverse 
temperature gradient. Aerosolized particulates, 
heated by solar radiation and/or terrestrial 
radiation, rapidly transfer that heat to the 
surrounding atmosphere, which in turn reduces 
the adverse temperature gradient relative to 
Earth’s surface and, concomitantly, reduces 
surface heat loss and thereby over time causes 
increased surface warming [44]. The same 
particulate-pollution-driven process operates 
locally, as in the case of urban heat islands 
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[67,152-155], regionally, and globally. 
Consequently, particulate pollution, not 
anthropogenic carbon dioxide, is the likely 
principal cause of global warming [1,42-44]. 
 
7. CONVECTION-REDUCTION BY SAHA-

RAN-BLOWN SOLAR-HEATED DUST 
 
During summer months, Saharan-blown dust 
covers an area over the tropical ocean between 
Africa and the Caribbean about the size of the 
continental United States [66,85,86]. The dust-
layer extends to an altitude of 5-6 km; 
measurements indicate greater dust density and 
associated haziness at 3 km than at the surface 
[86]. 
 
The warmth of the upper portion of the Saharan-
blown dust layer is a consequence of its origin 
over the Sahara, but the warmth is maintained by 
the absorption of solar radiation by the dust [85], 
which is known to contain radiation-absorbing 
iron oxide [83,84] that, when incorporated in 
bodies of water, initiates harmful algae blooms 
[111,156-158]. 
 
As noted by Prospero and Carlson [86]: “ ... the 
warmth of the Saharan air has a strong 
suppressive influence on cumulus convection ....” 
Dunion and Velden [85] further note: “This new 
type of satellite imagery [Geostationary 
Operational Environmental Satellite (GOES)] 
reveals that the SAL [Saharan air layer] may play 
a major role in suppressing TC [tropical cyclone] 
activity in the North Atlantic. This paper presents 
documentation of these suppressing 
characteristics for a number of specific TC-SAL 
interactions that have occurred during several 
recent Atlantic hurricane seasons.” Similarly, 
Wong and Dessler [159] also recognize the 
suppression of convection over the tropical North 
Atlantic by the Saharan air layer. The one 
commonality of these investigations is their 
failure to recognize the generality of the 
reduction of convection-efficiency that occurs as 
a consequence of reducing the adverse 
temperature gradient through aerosol particulate 
heating [1,42-44]. 
 

8. SURFACE WARMING BY FALLEN 
AEROSOL PARTICULATES 

 
Tropospheric aerosol particles, as reviewed 
above, heat the atmosphere, reduce the adverse 
temperature gradient relative to Earth’s surface 
which suppresses atmospheric convection and 
thus reduces surface heat loss and increases 

global warming [1,42-45]. However, the lifetime 
of tropospheric particulates is short, typically 
settling to the surface in days to weeks [55-
58,124]. If the aerosol particulates settle into 
bodies of water, their iron components disrupt 
the natural balance there, causing, for example, 
harmful algae blooms [111]. If the aerosol 
particulates settle on land, they absorb solar 
radiation and cause additional global warming 
[160,161]. If the aerosol particulates settle on 
snow or ice (Fig. 6), they also change the albedo, 
causing less light to be reflected and more to be 
absorbed, further adding to global warming 
[162,163]. Zhang et al. [164] estimate a 38% 
albedo reduction caused by downed aerosol 
particulates in snow cover on the Tibetan 
Plateau. As noted above, forest fires have an 
“immediate and profound impact” on snow 
disappearance, earlier springtime melt, and lower 
summer stream flows [94]. 
 

9. AEROSOL TRANSPORT OF PARTI-
CULATES INTO THE STRATOSPHERE 

 
There is ample evidence of tropospheric aerosols 
in the stratosphere [165]. Various means exist for 
lofting aerosols from troposphere to stratosphere, 
including super-cell convection [166] and 
monsoon anticyclonic transport [167]. Soot 
aerosol, presumably from airline traffic in flight 
corridors near 10-12 km altitude, has been 
observed at up to 20 km altitude [168]. Volcanic 
ash aerosol was observed at 19 km altitude 
[169]. 

 
Residence time of particulates in the 
stratosphere is considerably longer than the days 
to weeks residence time of troposphere aerosols 
[55-58]. For example, the mean residence time 
for a tungsten-185 tracer injected into the 
equatorial stratosphere between 18 and 20 km 
altitude was found to be about 10 months, with 
most of the transport into the troposphere 
occurring at middle latitudes [170]. 
 
There are inherent risks associated with the 
placement of aerosol particulates into the 
stratosphere, whether deliberately, inadvertently, 
or through natural processes. The current 
ongoing near-daily, near-global geoengineering 
heat-trapping activity masks the effects of 
potential radiation-altering stratospheric aerosols. 
They also pose a serious threat to atmospheric 
ozone which protects life from ultraviolet solar 
radiation. Significant stratospheric ozone 
destruction was observed following the eruptions 
of El Chich´on  [171]] and Pinatubo [149]. 
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Fig. 6. Particulate-coated glacier in Iceland. Courtesy of Daniel Knieper 
 
Table 1 from [104] shows the range of halogen 
compositions of coal fly ash (CFA). Covert 
geoengineering jet sprays massive quantities of 
ultra-fine CFA that presumably places vast 
amounts of chlorine, bromine, fluorine and iodine 
into the atmosphere all of which can deplete 
ozone. Other substances in CFA aerosols, 
including nano-particulates, might also adversely 
affect atmospheric ozone. Even if placed in the 
troposphere, some of this material will likely be 
lofted into the stratosphere [165-167]. 
 

Table 1. Coal fly ash: range of halogen 
element compositions [172] 

 
Chlorine 
µg/g 

Bromine 
µg/g 

Fluorine 
µg/g 

Iodine 
µg/g 

13 – 25,000 0.3 – 670 0.4 – 624 0.1 – 200 
 
By one recent estimate there have been 2,543 
scientific articles published on the subject of 
solar radiation management geoengineering 
[173]. These articles also presume future                 
solar radiation management will take place in the 
stratosphere, not in the troposphere where                
our weather mostly occurs. As should be              
evident in this review, academic climate 
scientists operating under the CO2 paradigm are 
unlikely to be able to recognize other causes of 
global warming. Moreover, many of them appear 
to be naïve about the catastrophic dangers 
proposed by SRM and other geoengineering 

schemes, and invariably fail to even mention            
the ongoing tropospheric geoengineering and its 
risks to human [12,52,54,106-108,174] and 
environmental [11,13,104,105,109-111] health. 
 

10. REVIEW SUMMARY 
 
Planet earth is getting hotter, threatening the 
integrity of the biosphere. By its refusal to 
consider the role of the covert tropospheric 
geoengineering that has been going on for 
decades, the climate science community, 
including the IPCC, has systematically failed to 
tell the truth about global warming. 
  
The IPCC was established in 1988, and in 
concert with various other governmental              
entities and without proof, convinced numerous 
political leaders that fossil-fuel-produced              
carbon dioxide and other anthropogenic 
greenhouse gases were trapping heat that 
otherwise would be released into space.              
Global warming, also called climate change, 
became the new global enemy just as the Cold 
War ended. 

 
The climate science community treats                   
global warming solely as a radiation-balance 
issue which leads to a radically incomplete 
understanding of the factors affecting                   
Earth’s surface temperature, as disclosed in this 
review. 
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 Many climate scientists do not understand 
the role of tropospheric particulates, 
whether on balance they warm or cool the 
Earth. 

 In a series of publications we disclosed a 
climate-science paradigm shift, namely, 
that the main cause of global warming is 
not carbon dioxide heat retention, but 
particulate pollution aerosols that heat the 
troposphere and reduce the efficiency of 
atmospheric-convective heat removal from 
Earth’s surface. 

 Most particulates found in the troposphere 
absorb solar energy to some extent from 
one or more portions of the wavelength 
spectrum. Particulate aerosols have direct 
effects of absorbing radiation as well as 
indirect effects on the formation, 
microphysics, and lifetime of clouds. 

 The one generalization that can be made 
about virtually all tropospheric aerosol 
particulates, including cloud droplets and 
their aerosol components, is that they 
absorb short- and long-wave solar 
radiation and absorb long-wave radiation 
from Earth’s surface and become heated, 
thereby making a significant contribution to 
global warming and climate change. 

 Dark-colored particulates are efficient 
absorbers of solar radiation of which black 
carbon, e.g. soot, absorbs light over the 
entire solar spectrum. 

 Brown carbon, e.g. humus, absorbs near-
UV wavelengths and, to a lesser extent, 
visible light. 

 Carbon surface deposits on non-
carbonaceous aerosols can enhance their 
solar radiation heat potential. 

 For carbon-free desert dust, iron oxide is 
by far the greatest light absorbing 
substance with the amount of absorption 
being a linear function of iron oxide 
content. 

 Magnetite is the most efficient short-wave 
absorber among iron oxides in the 
atmosphere. 

 Iron oxides in the ash from forest fires can 
be converted at high temperatures to 
magnetite which enhances the absorption 
of solar radiation. 

 Iron is usually found in anthropogenic 
carbonaceous particles. 

 Iron-oxide minerals, although somewhat 
less efficient solar radiation absorbers than 
carbon, nevertheless are dominate among 
mineral radiation-absorbers. 

 Forest fires have an “immediate and 
profound impact” on snow disappearance, 
earlier springtime melt, and lower summer 
stream flows. 

 Pyrogenic coal fly ash (CFA), contains 
magnetite and other iron-oxides, as well as 
carbon particles. Aerosolized CFA 
efficiently absorbs solar radiation and 
heats the troposphere. 

 The main particulate-substance being jet-
sprayed into the atmosphere is consistent 
with coal fly ash (CFA). 

 Although a major threat to human and 
environmental health, CFA is otherwise an 
ideal particulate for heating the 
troposphere through absorption of short-
wave and long-wave radiation because 
CFA contains substantial quantities of the 
iron oxides, hematite and magnetite, as 
well as carbon. 

 The global warming peak during World 
War II is understandable as wartime 
aerosolized pollution particulates trapped 
heat that otherwise should have been 
returned to space, thus causing global 
warming at Earth’s surface by reducing 
atmospheric-convective heat loss. 

 WW2 global warming rapidly subsided 
after hostilities ceased since tropospheric 
pollution-particulates typically fall to ground 
in days to weeks. 

 After 1950 global warming and particulate-
proxies increased exponentially. 

 Particulate matter in the troposphere, 
including the moisture droplets of clouds, 
not only blocks sunlight, but also absorbs 
in-coming solar radiation and out-going 
terrestrial radiation. These heated particles 
transfer that heat to the surrounding 
atmosphere, reducing the adverse 
temperature gradient relative to Earth’s 
surface. The reduction of adverse 
temperature gradient concomitantly 
reduces convective heat transport from 
Earth’s surface. This is a general concept 
that applies globally, regionally, and 
locally. 

 The Mt. St. Helens volcanic plume 
provides one independent line of evidence 
that supports our contention that the 
heating of tropospheric aerosols reduces 
convective heat loss from Earth’s surface 
[148]. 

 The radiosonde and aethalometer 
investigations of Talukdar et al. [151] 
provide a second independent line of 
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evidence that supports our contention that 
the heating of tropospheric aerosols 
reduces convective heat loss from Earth’s 
surface. 

 Investigations of the suppression of 
convection over the tropical Atlantic by the 
summer-blown Saharan-dust provides a 
third independent line of evidence that 
supports our contention that the heating of 
tropospheric aerosols reduces convective 
heat loss from Earth’s surface [85,86,159]. 

 If aerosol particulates settle into bodies of 
water, their iron components disrupt the 
natural balance of such waters, causing, 
for example, harmful algae blooms. 

 If aerosol particulates settle on land, they 
absorb solar radiation causing additional 
global warming. 

 If aerosol particulates settle on snow or 
ice, they absorb solar radiation and also 
change the albedo, causing less light to be 
reflected and more to be absorbed, further 
adding to global warming. 

 There is ample evidence of tropospheric 
aerosol transport into the stratosphere, 
where residence times are measured in 
months, not days or weeks.  

 There are inherent risks associated with 
the placement of aerosol particulates into 
the stratosphere, whether deliberately, 
inadvertently, or through natural 
processes. The currently ongoing near-
daily, near-global geoengineering heat-
trapping activity masks the effects of 
potential radiation-altering stratospheric 
aerosols, as well as pose a serious threat 
to atmospheric ozone which protects life 
from harmful solar ultraviolet radiation. 

 Covert geoengineering emplaces massive 
quantities of ultra-fine CFA that contains 
chlorine, bromine, fluorine and iodine into 
the troposphere, some of which may be 
lofted into the stratosphere, and thus 
potentially deplete ozone. Other 
substances in CFA aerosols, including 
nano-particulates, are also likely to 
adversely affect atmospheric ozone. 

 Academic climate scientists and the IPCC 
have a fundamental misunderstanding 
about what really causes global warming. 
Moreover, they appear to minimize the 
grave dangers that would arise from 
proposed geoengineering schemes like 
stratospheric aerosol injection. 

 More grievously, the complicity of silence 
among climate scientists and engineers 

cloaks the covert activity of deliberately 
poisoning the air we all breathe, and 
deceives the public about the dire health 
risks. 

 
Solving the anthropogenic global warming 
problem is well within the means of current 
technology, and in principle great strides could 
be accomplished in a matter of months, due to 
the short lifetime of tropospheric particulates. 
What is needed is: (1) Abruptly halting 
tropospheric particulate geoengineering; (2) 
trapping particulate emissions from coal-fired 
industrial furnaces, especially in India and China, 
and from vehicle exhaust; and, (3) Reducing 
particulate-forming fuel additives. 
 

The problem of particulate-caused contamination 
of the biosphere and the runaway global warming 
that accompanies it must be addressed 
immediately if we are to have a viable future. 
 

11. CONCLUSIONS 
 

The climate science community and the United 
Nations’ Intergovernmental Panel on Climate 
Change (IPCC) have failed to acknowledge 
tropospheric particulate geoengineering that has 
been ongoing with ever-increasing duration and 
intensity for decades. Ignoring geoengineering 
climate altering activities in their climate 
considerations leads to incorrect results and, 
consequently, misinformation to world 
governments about climate change. 
 
The climate science community and the IPCC 
erred by treating global warming solely as a 
radiation-balance issue, which has resulted in a 
seriously incomplete understanding of the 
fundamental factors that affect Earth’s surface 
temperature. Tropospheric particulate heating by 
absorption of short- and long-wave solar 
radiation and long-wave radiation from Earth’s 
surface results in reducing the adverse 
temperature gradient relative to Earth’s surface 
and, consequently, reducing the efficiency of 
atmospheric-convective surface-heat removal. 
 

We recently published a fundamentally new 
climate-science paradigm shift, namely, that the 
main cause of global warming is not carbon 
dioxide heat retention, but particulate pollution 
that absorbs radiation, heats the troposphere, 
and reduces the efficiency of atmospheric-
convective heat removal from Earth’s surface. In 
addition to the World War II data, three additional 
independent lines of supporting evidence are 
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reviewed: (1) Passage overhead of the Mt. St. 
Helens volcanic plume; (2) radiosonde and 
aethalometer investigations of Talukdar et al.; 
and, (3) convection suppression over the tropical 
North Atlantic caused by the Saharan-blown 
dust. 
 

Generally, black carbon aerosols absorb light 
over the entire solar spectrum; brown carbon 
aerosols absorb near-UV wavelengths and, to a 
lesser extent, visible light. Iron oxides are good 
absorbers, the most efficient being magnetite. 
Pyrogenic coal fly ash, both from coal burning 
and from tropospheric jet-spraying 
geoengineering (for military purposes and/or 
climate engineering), contains carbon and iron 
oxides, hematite and magnetite. 

  
The risks associated with the placement of 
aerosol particulates into the stratosphere, 
whether lofted naturally, inadvertently, or 
deliberately as proposed for solar radiation 
management, poses grave risks, including the 
destruction of atmospheric ozone. To solve 
global warming humanity must: (1) Abruptly halt 
tropospheric particulate geoengineering; (2) trap 
particulate emissions from coal-fired industrial 
furnaces (especially in India and China) and from 
vehicle exhaust; and, (3) reduce particulate-
forming fuel additives. Greatly reducing 
tropospheric aerosol particulates will quickly lead 
to a reduction in global warming and to an 
improvement in public health. 
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