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ABSTRACT	

We	present	compelling	evidence	that	supports	our	contention	that	aerosolized	coal	
fly	ash	particles	are	the	main	agents	responsible	for	stratospheric	ozone	depletion,	
not	 chlorofluorocarbon	 gases.	 Aerosolized	 coal	 fly	 ash	 particles,	 uplifted	 to	 the	
stratosphere,	 not	 only	 serve	 as	 ice-nucleating	 agents,	 but	 are	 trapped	 and	
concentrated	 in	 stratospheric	 clouds,	 including	 Polar	 Stratospheric	 Clouds.	 In	
springtime,	as	stratospheric	clouds	begin	to	melt/evaporate,	said	ozone-consuming	
coal	fly	ash	particles	are	released	making	them	available	to	react	with	and	consume	
stratospheric	ozone.	Ceasing	to	contaminate	the	environment	with	aerosolized	coal	
fly	ash	will	decrease	stratospheric	ozone	destruction,	reduce	global	warming,	and	
will	significantly	improve	human	and	environmental	health.	
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INTRODUCTION	

Earth’s	 biosphere	 is	 collapsing	 at	 an	 unprecedented	 rate,	 including	 and	 especially	 the	
stratospheric	ozone	layer	that	shields	surface	life	from	the	deadly	ultraviolet	solar	radiation.	
That	 collapse,	 which	 has	 been	 progressing	 for	 decades,	 is	 due	 to	 both	 deliberate	 and	
unintentional	human	activity.	Discovering	the	causes	of	biosphere	collapse,	we	submit,	should	
be	 the	 highest	 priority	 for	 scientists.	 But	 all	 too	 often,	 scientists	 continue	 to	 plod	 along	
unquestioningly	 working	 in	 problematic	 paradigms,	 while	 ignoring	 paradigm	 shifting	
discoveries	[1,	2].	Here	we	question	the	idea	that	chlorofluorocarbon	compounds	(CFC’s)	are	
the	 main	 agents	 responsible	 for	 stratospheric	 ozone	 depletion,	 and	 present	 evidence	 that	
aerosolized	coal	fly	ash	is	likely	to	be	the	most	significant	major	cause	of	stratospheric	ozone	
depletion,	a	cause	that	has	been	overlooked	by	the	scientific	community.	
	
In	1982,	McCormick	et	 al.	 [3]	 reported	 sightings	of	Polar	Stratospheric	Clouds	 (PSC)	by	 the	
Stratospheric	 Aerosol	 Measurement	 II	 (SAM	 II)	 satellite	 system	 during	 1979	 northern	 and	
southern	winters.		From	SAM	II	data,	Hamill	et	al.	[4]	concluded	that	light	extinction	could	not	
be	 due	 to	 ice	 crystals	 alone,	which	 implies	 significant	 particulate	matter	 is	 associated	with	
stratospheric	clouds.		
	
In	1985,	Farman	et	al.	[5]	reported	that	total	ozone	levels	over	Antarctica	during	the	month	of	
October	had	steadily	decreased	since	1970.	In	1986,	from	satellite	measurements	Stolarski	et	
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al.	 [6]	 showed	 that	 the	 “ozone	hole”	 covers	 all	 of	Antarctica	 and	 corresponds	 to	 the	 region	
enclosed	by	the	southern	polar	vortex	[4].	The	cause	of	the	Antarctic	“ozone	hole”	was	a	great	
mystery	[7].	
	
Considerable	efforts	were	expended	to	determine	the	cause	of	stratospheric	ozone	depletion.	
The	 proposed	 chemical	 species	 typically	 involved	 gas-phase	 reactions,	 usually	 involving	
halogens	and	photodissociation	[8,	9].	In	1989,	the	United	Nations	(UN)	formally	adopted	the	
“Montreal	 Protocol	 on	 Substances	 that	 Deplete	 the	 Ozone	 Layer”	 that	 included	 regulating	
numerous	halogen-containing	chemicals	that	readily	form	gases	[10].	In	doing	so,	the	United	
Nations	decreed	that	said	halogen-containing	chemicals	were	in	fact	the	main	cause	of	ozone	
depletion.		
	
Chlorofluorocarbons	 (CFC’s)	 were	 used	 for	 a	 variety	 of	 industrial	 purposes	 including	
refrigerants,	spray	cans,	solvents,	and	foaming	agents	to	create	insulation.	In	1974,	Rowland	
and	Molina	[8],	advanced	the	theory	that	CFC’s	were	destroying	the	stratospheric	ozone	layer.	
They	reported	that	these	molecules	would	not	break	down	in	the	atmosphere	and	eventually	
find	their	way	to	the	stratosphere	where	they	would	be	photolyzed	to	release	reactive	chlorine,	
which	depletes	ozone.	Ozone	depletion	by	CFC’s	would	occur	under	sunlit	 conditions	 in	 the	
upper	stratosphere	(30-50	km),	not	in	the	lower	stratosphere,	where	most	of	the	ozone	resides.	
The	overall	depletion	was	expected	to	be	5-10%,	not	enough	to	explain	the	newly	discovered	
Antarctic	ozone	hole.	Homogeneous	(gas	phase)	chemistry	could	not	account	for	the	ozone	loss	
[11].	Solomon	and	coworkers	argued	that	newly	discovered	Polar	Stratospheric	Clouds	(PSC’s)	
in	 the	 extremely	 cold	 polar	 lower	 stratosphere	 provide	 reaction	 sites	 for	 heterogeneous	
chemical	 reactions	 between	 the	 relative	 inert	 chlorine	 gases	 HCL	 and	 ClONO2.	 She	
hypothesized	that	Antarctic	PSC’s	were	electrostatically	attracting	CFC’s	and	providing	them	
sites	 in	 the	 form	 of	 ice	 crystals,	 on	 which	 the	 Rowland/Molina	 proposed	 ozone-depleting	
reactions	could	rapidly	take	place	[12].		
	
Recent	discoveries	about	the	causes	of	Earth’s	Great	Extinctions	suggest	another	more	likely	
cause	of	stratospheric	ozone	depletion,	coal	fly	ash.	Earth’s	great	extinctions	correlate	with	epic	
volcanic	phenomena	called	Large	Igneous	Provinces	(LIP’s)	[13].	The	Permian	Extinction	(The	
Great	Dying)	250	million	years	ago	coincided	with	the	Siberian	Traps	LIP,	a	massive	outpouring	
of	lava	and	intrusion	of	underground	magma	which	mixed	with	thick	coal	seams.	This	hot	coal-
basalt	 mixture	 extruded	 at	 numerous	 surface	 locations,	 producing	 multiple	 plumes	 of	
pyroclastic	fly	ash,	soot,	sulfate	and	basaltic	dust	which	ascended	to	the	upper	atmosphere	[14].	
This	material	was	dispersed	globally	and	 the	resulting	char	deposits	 in	Permian-aged	rocks	
were	found	to	be	remarkably	similar	to	modern	coal	fly	ash	[15].	The	Permian	Extinction	was	
characterized	by	high	 levels	of	carbon	dioxide,	methane,	and	rapid	global	warming	to	 levels	
lethal	to	most	living	organisms	[16].	A	period	of	deadly	ultraviolet	radiation	stress	may	have	
resulted	from	stratospheric	ozone	depletion	due	to	this	outpouring	of	hydrothermal	organo-
halogens	[17].	The	Cretaceous-Tertiary	(K-T)	extinction	65	million	years	ago	is	known	for	the	
disappearance	 of	 dinosaurs	 and	 the	 Chicxulub	 (asteroid)	 impact.	However,	 recent	 scientific	
evidence	has	linked	this	mass	extinction	to	resurgent	Deccan	Trap	LIP	volcanism	[18].		
	
We	are	already	well	into	the	first	anthropogenic	extinction	event	in	which	coal	is	an	integral,	
crucial	part,	not	the	least	of	which,	we	submit,	is	the	destruction	of	stratospheric	ozone	which	
shields	surface	life	from	harmful	solar	ultraviolet	radiation.	
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Coal	 is	the	most	abundant	fossil	 fuel	on	earth.	Since	1970	the	annual	production	of	coal	has	
nearly	doubled	[19,	20]	(Figure	1).	
	

	
Figure	1.	Global	coal	production	by	year,	in	millions	of	metric	tonnes	based	upon	[19,	20]	

	
The	use	of	coal	is	beset	with	serious	environmental	problems,	including	the	formation	of	acid	
rain	by	sulfur	dioxide	and	nitrous	oxides.	But	far	more	devastating	problems	are	caused	by	coal	
fly	 ash,	 the	 annual	 global	 production	 of	which	was	 reported	 in	 2014	 as	 130	million	metric	
tonnes	[21].	
	
During	industrial	coal	burning,	the	heavy	ash	settles	beneath	the	burner;	the	light	ash,	coal	fly	
ash,	 forms	 in	 the	 gases	 above	 the	 burner	 and	 exits	 the	 smokestacks,	 unless,	 as	 in	Western	
nations,	it	is	trapped	by	electrostatic	precipitators	and	sequestered.	Even	so,	ultrafine	aerosols	
from	coal	burning	are	likely	to	escape	electrostatic	precipitators	[22]	or	be	wind-blown	from	
sequestration	areas	[23].	But	the	most	devastating	adverse	consequence	for	life	on	this	planet	
is	the	deliberate,	covert,	near-daily,	near-global	jet-emplacement	of	particulates,	evidenced	as	
coal	fly	ash,	into	the	upper	troposphere	(Figure	2)	[24-27].	



	
	

	
	

589	

Herndon, J. M., & Whiteside, M. (2022). Aerosolized Coal Fly Ash Particles, the Main Cause of Stratospheric Ozone Depletion, not 
Chlorofluorocarbon Gases. European Journal of Applied Sciences, 10(3). 586-602. 

URL:	http://dx.doi.org/10.14738/aivp.103.12524	

	
Figure	2.	From	[28].	Deliberate	jet-emplaced	particulate	trails,	clockwise	from	top	left	San	

Diego,	California	(USA);	Karnack	(Egypt);	London	(England);	Danby,	Vermont	(USA);	
Luxembourg	(Luxembourg);	Jaipur	(India)	

	
COAL	FLY	ASH	IN	THE	STRATOSPHERIC	POLAR	VORTEX	

Coal	fly	ash	effectively	nucleates	ice	at	conditions	relevant	to	mixed	phase	clouds.	Enhanced	ice	
nucleation	by	coal	 fly	ash	aerosol	particles	 is	 initiated	by	their	porous	structure	[29].	 In	the	
scientific	 literature,	 coal	 fly	 ash	particles	 are	 often	 classified	or	 confused	with	mineral	 dust	
particles.	The	majority	of	cirrus	clouds	freeze,	or	nucleate	around	two	types	of	seeds,	“mineral	
dust”	and	metallic	aerosols,	presumably	with	important	contributions	from	coal	fly	ash	to	both	
categories	[30].	But	as	we	describe	with	examples,	there	is	considerable	diversity	of	chemical	
composition	which	is	characteristic	of	coal	fly	ash	mineralogy.	
	
Figure	3	 shows	an	example	of	 a	 captured	 tropospheric	 ice	nucleus	 consisting	of	nanometer	
carbon	balls	[31]	compared	with	similar	carbon	balls	extracted	from	coal	fly	ash	[32,	33].	
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Figure	3.	AA:	Tropospheric	ice	nucleus	composed	of	nanometer	size	carbon	balls,	adapted	from	

[31];	A	and	B:	similar	carbon	balls	extracted	from	coal	fly	ash,	adapted	from	[32,	33]	
	
Carbon	nanoparticles	from	coal	fly	ash	occur	in	a	variety	of	forms,	as	shown	in	Table	1,	some	of	
which	have	been	observed	in	the	polar	stratosphere	[34],	for	example,	Figure	4.	
	

Table	1.	Different	carbon	nanomaterials	extracted	from	coal	fly	ash.	Adapted	from	[33]	
Types	of	Nano-Carbons	 Additional	Descriptions	 References	
Fullerene	(C60)	 Hollow,	spherical	 [35]	[36]	

[37]	[38]	
Nanocarbon	and	nanocoating	 Nanoscale	sooty	or	graphitic	fullerene-like	

carbons;	porous	nanocoating	
[39]	[40]	
[41]	

Carbon	nanotubes	 Single-walled	or	multi-walled;	diameter	of	
8-20	nm;	amorphous	and	crystalline	nature	

[42]	[36]	
[43]	[44]	

Carbon	nanoballs	 5-10	nm	 [45]	
Carbon	onions	 Nanopolyhedra,	onion-like	particles	 [46]	
Chars	 Porous,	carbon-rich	particles	 [47]	[48]	
Soots	 Ultrafine	primary	particles;	aggregates	of	

10-50	nm	diameter	
[39]	[49]	
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Figure	4.	(a),	(b),	(c),	(d):	Carbonaceous	particles	from	an	altitude	of	17.4	km	in	the	polar	
stratosphere	from	[34];	(a)	and	(b)	are	amorphous,	(c)	and	(d)	showing	regions	of	linear	
ordering.	A	from	[50]	and	B	from	[51]	are	carbonaceous	coal	fly	ash	nanoparticles	that	also	

show	linear	structures,	set	off	in	B	by	white	lines	
	

Nanoparticles,	 lofted	 into	 the	 stratosphere	 [52-54],	 display	 a	 range	 of	 compositions	
characteristic	of	coal	fly	ash,	as	illustrated	in	Figures	5	and	6	by	particles	captured	from	Polar	
Stratospheric	Clouds	within	the	Arctic	vortex	[55].	
	

	
Figure	5.	Left:	Pb-rich	nanoparticle	collected	from	Polar	Stratospheric	Clouds	within	the	Arctic	

vortex	[55];	Right:	similar	PbS	nanoparticle	from	coal	fly	ash	[56]	
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Figure	6:	(a),	(b)	and	(c):	Nanoparticles	collected	from	Polar	Stratospheric	Clouds	within	the	
Arctic	vortex	from	[55];	Numbered:	Larger	particles	displaying	similar,	although	non-identical	

compositions.	from	coal	fly	ash	[57]	
	
Some	idea	of	the	compositional	range	of	coal	fly	ash	nanoparticles	is	shown	in	Table	2.	
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Table	2.	Some	examples	of	coal	fly	ash	nanoparticle	compositions.	
Coal	Fly	Ash	Nanoparticle	Compositions,	Figure	Numbers	in	Parentheses	 References	
Hematite	(1);	Jarosite	(2);	Fe-rich	in	carbonaceous	matrix	(3);	Fe-Si-Al	(4)	 [58]	
Ti-rich	(2);	Ti,	Al-rich	in	char	matrix	(3);	Fe-rich	mixed	with	carbonaceous	(4,	
5);	Fe-Si-Al	(6)	

[59]	

Rutile	(1);	Spheres	containing	Zn,Ni,	Mg,	Al	(2);	Jarosite	pseudomorph	(3);	Fe-
Pb-As	particle	(4);	Carbonaceous	(6),	Quartz	(7)	

[60]	

Al-Si-Ti-K-Mg-Fe	carbonaceous	sphere	(3);	Pb	in	carbon	nanotubes	(6)	 [61]	
Glassy	 aluminosilicate	 (1);	 Al-Si	 carbonaceous	 (2);	 Carbon	 nano-tubes	
encapsulating	fullerenes	and	Hg	(3);	Carbon-encapsulating	As-Pb-Se-Br-Si-O	
(4);	As-bearing	jarosite	plus	As-O-Pb	amorphous,	As-bearing	carbonaceous	+	
Al-Si-Pb	particle	(5);	Amorphous	Al-Cr-Fe-Mg-Si-Ti	(11)	

[62]	

Rock	fragment	+	spinel	+	zircon	(1);	Al-Si-O-Fe-K-Ca	sphere	(4);	P-Nd-Ce-La-
Th	particle	(5);	Hematite	+	goethite	+	magnetite	(6)		

[50]	

Siderite	containing	Cd,	Mo,	Mn	+	nano-hemitite	(3);	Silicate	containing	As,	Zr,	
U	and	Fe	amorphous	+	nano-pyrite	containing	Se	(6)	

[63]	

Fe-Cr	particle	(3);	Iron	oxide	spinel	(4)	 [64]	
	

COAL	FLY	ASH	KILLS	OZONE	
When	coal	is	burned	industrially,	coal	fly	ash	condenses	and	accumulates	in	the	hot	gases	above	
the	burner.	Nearly	all	of	the	chemical	elements,	present	in	trace	amounts	in	the	coal,	become	
concentrated	in	coal	fly	ash.	Many,	but	not	all,	coal	fly	ash	particles	occur	as	spheres	which	owe	
their	shape	to	the	surface	tension	of	the	suspended	melt.	Coal	fly	ash	particles	range	in	size	from	
a	few	nm	to	tens	of	µm	across	and	tend	to	be	disequilibrium	assemblages,	having	formed	rapidly	
in	 an	unnatural	 environment.	 Consequently,	 coal	 fly	 ash	 occurs	 in	 a	multitude	 of	 elemental	
combinations	and	poses	great	risks	to	human	and	environmental	health	[26,	65].	
	
Primary	elements	in	coal	fly	ash	are	oxides	of	silicon	(Si),	Aluminum	(Al),	iron	(Fe),	and	calcium	
(Ca),	 with	 lesser	 amounts	 of	 magnesium	 (Mg),	 sulfur	 (S),	 sodium	 (Na),	 Chlorine	 (Cl),	 and	
potassium	(K).	Carbon	(C)	is	present	in	its	elemental	form.	The	many	trace	elements	in	coal	fly	
ash	include	arsenic	(As),	barium	(Ba),	beryllium	(Be),	cadmium	(Cd),	chromium	(Cr),	copper	
(Cu),	 lead	 (Pb),	manganese	 (Mn),	mercury	 (Hg),	 nickel	 (Ni),	 phosphorus	 (P),	 selenium	 (Se),	
strontium	(Sr),	thallium	(TI),	thorium	(Th),	titanium	(Ti),	uranium	(U),	vanadium	(V)	and	zinc	
(Zn).	Generally,	concentrations	of	these	trace	elements	in	coal	fly	ash	are	typically	higher	than	
those	found	in	the	Earth’s	crust,	soil,	or	even	solid	coal	[66].	At	least	39	elements	can	be	partially	
extracted	 from	 coal	 fly	 ash	 by	 exposure	 to	 water	 [67].	 Aerosolized	 coal	 fly	 ash	 makes	
atmospheric	 water	 more	 electrically	 conductive	 because	 of	 the	 many	 dissolved,	 ionized	
elements	[68].	
	
Ozone	 is	 destroyed	 by	 reaction	 with	 halogens	 [69,	 70].	 Coal	 burning	 in	 China	 led	 to	 an	
unexpectedly	 large	 atmospheric	 component	 of	 reactive	 bromine	 and	 chlorine	 in	 the	
atmosphere	[71].	Coal	fly	ash	contains	halogen	elements	in	the	ranges	shown	in	Table	3.	
	

Table	3.	Range	of	halogen	element	contents	in	coal	fly	ash	[72].	
Chlorine	µg/g	 Bromine	µg/g	 Fluorine	µg/g	 Iodine	µg/g	
13	–	25,000	 0.3	–	670	 0.4	–	624	 0.1	–	200	
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Experiments	 are	 sometimes	 made	 to	 render	 coal	 fly	 ash	 safer	 and	 more	 amenable	 for	
commercial	 use,	 for	 example,	 as	 a	 component	 of	 cement.	 Experiments	 that	 employ	 ozone	
provide	important	information	as	to	the	ability	of	coal	fly	ash	to	destroy	ozone.	For	example,	
the	surfaces	of	coal	fly	ash	carbon	particles	are	oxidized	by	ozone	[73]	demonstrating	that	coal	
fly	 ash	 carbon	particles	 kill	 ozone.	 Similar	 investigations	 also	 indicate	 that	 coal	 fly	 ash	kills	
ozone	[74,	75].	
	
Inferences	regarding	ozone	destruction	by	the	components	of	coal	fly	ash	can	be	made	on	the	
basis	of	ozone	destruction	by	similar	compounds:	Ozone	is	consumed	by	reaction	with	carbon	
[76,	77].	Ozone	is	also	consumed	by	reactions	with	mineral	oxides	[78-82].	Furthermore,	ozone	
is	 consumed	 by	 reactions	 with	 oxides	 of	 iron	 ,	 manganese	 [83,	 84].	 Additionally,	 ozone	 is	
consumed	by	reactions	with	metals	[85,	86]	and	noble	metals	[84,	87].	All	of	these	substances	
occur	in	coal	fly	ash	nanoparticles.	
	
CONNECTIONS	BETWEEN	POLAR	STRATOSPHERIC	CLOUDS	AND	OZONE	DEPLETION	

On	the	basis	of	three	consecutive	years	of	observations,	Hamill	et	al.	[4]	notes:	“[W]e	show	that	
the	evaporation	of	the	[Antarctic	Polar	Stratospheric]	cloud		is	highly	correlated	in	time	with	the	
decrease	in	ozone	concentration.”	There	is	general	acknowledgement	that	aerosol	particles	can	
serve	as	cloud	nuclei,	however,	nucleation	is	typically	the	extent	of	discussion.	Our	experience	
with	aerosolized	coal	fly	ash	particles	brought	to	ground	by	snowfall	sheds	some	light	on	the	
connections	between	Polar	Stratospheric	Clouds	and	stratospheric	ozone	depletion.	
	
For	decades,	with	increasing	frequency	and	geographic	range,	particulate	matter	has	been	jet-
sprayed	into	the	troposphere	(Figure	2).	Internationally,	officials	decline	to	provide	either	the	
composition	or	the	intent	of	the	tropospheric	particulate	emplacement,	and	falsely	assert	that	
the	 jet-trails	 are	 harmless	 ice-crystal	 contrails	 [26,	 88].	 The	 unknown	 jet-sprayed	 aerosol	
substance	had	 to	 contain	aluminum	–	 found	 repeatedly	 in	all	 rainwater	 samples	 taken.	The	
aerosolized	particulate	matter	was	clearly	not	a	natural	product,	such	as	desert	sand,	because	
the	Earth’s	surface	aluminum	is	generally	chemically	combined,	locked	up	tightly,	with	oxygen	
and	does	not	dissolve	in	rainwater.	
	
We	published	evidence	that	the	coal	fly	ash	is	the	main	aerosolized	particulate	jet-sprayed	into	
the	troposphere	[25,	89,	90]	by	comparing	element	ratios	relative	to	barium	in	rainwater	and	
melted	 snow	 with	 corresponding	 ratios	 measured	 in	 the	 lixiviate	 of	 coal	 fly	 ash	 leaching	
experiments	[67,	91]	(Figure	7).		
	



	
	

	
	

595	

Herndon, J. M., & Whiteside, M. (2022). Aerosolized Coal Fly Ash Particles, the Main Cause of Stratospheric Ozone Depletion, not 
Chlorofluorocarbon Gases. European Journal of Applied Sciences, 10(3). 586-602. 

URL:	http://dx.doi.org/10.14738/aivp.103.12524	

	
Figure	7.	From	[92],	showing	the	similarity	of	element	ratios	measured	in	rainwater	and	snow	
with	the	range	of	comparable	element	ratios	measured	in	the	laboratory	lixiviate	of	water-

leach	experiments	[67,	91]	
	

We	have	presented	evidence	[24]	that	tropospheric	post-chemtrail	snowfalls	can	collect	and	
bring	 down	 coal	 fly	 ash	 aerosol	 particulates	 in	 a	 manner	 similar	 to	 the	 physical-chemical	
technique	called	co-precipitation	[93]	(Figure	8).	One	phenomenon	we	observed	pertains	to	
snow	 mold	 which	 sometimes	 forms	 beneath	 snow	 in	 northern	 latitudes,	 for	 example	 in	
Wisconsin,	USA	and	Canada	(Figure	9).	
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Figure	8.	From	[94],	comparison	of	analytical	results	with	the	ranges	of	European	[67]	and	

American	[91]	coal	fly	ash	samples	
	

	
Figure	9.	Snow	mold	fibers	observed	and	sampled	as	snow	was	beginning	to	melt.	From	[24]	

	
In	springtime,	as	the	snow	begins	to	melt,	it	releases	the	trapped	coal	fly	ash	particles	which	
descend	 and	 are	 re-trapped	 on	 the	 underlying	 snow	 mold.	 These	 observations	 suggest	 a	
commonality	in	behavior	that	is	applicable	to	Polar	Stratospheric	Clouds	and	ozone	destruction.	
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Coal	fly	ash	particles,	lofted	into	the	stratosphere,	not	only	serve	as	ice-nucleating	agents,	but	
are	 further	 trapped	 by	 clouds,	 including	 Polar	 Stratospheric	 Clouds.	 In	 springtime,	 the	 icy	
stratospheric	clouds	melt/evaporate	releasing	their	trapped	coal	fly	ash	particles,	and	making	
those	ozone-consuming	coal	fly	ash	particles	readily	available	for	reaction	with	and	destruction	
of	ambient	stratospheric	ozone.	
	

CONCLUSIONS	
We	have	presented	compelling	evidence	that	supports	our	contention	that	aerosolized	coal	fly	
ash	 particles	 are	 the	 main	 agents	 responsible	 for	 stratospheric	 ozone	 depletion,	 not	
chlorofluorocarbon	gases.	Aerosolized	coal	fly	ash	particles,	uplifted	to	the	stratosphere,	not	
only	serve	as	ice-nucleating	agents,	but	are	trapped	and	concentrated	in	stratospheric	clouds,	
including	 Polar	 Stratospheric	 Clouds.	 In	 springtime,	 as	 stratospheric	 clouds	 begin	 to	
melt/evaporate,	 said	 ozone-consuming	 coal	 fly	 ash	 particles	 are	 released	 making	 them	
available	to	react	with	and	consume	stratospheric	ozone.	
	
Aerosolized	coal	fly	ash	particles	are	responsible,	not	only	for	the	destruction	of	stratospheric	
ozone,	which	shields	surface-life	from	deadly	solar	ultraviolet	radiation,	but	for	harm	to	human	
and	environmental	health.	Published	scientific	and	medical	articles	implicate	aerosolized	coal	
fly	ash	in	neurodegenerative	disease	[95],	COPD	and	respiratory	disease	[96,	97],	lung	cancer	
[98],	cardiovascular	disease	[99],	COVID-19	and	immunopathology	[100,	101].	
	
Aerosolized	 coal	 fly	 ash	 contributes	 to	 global	 warming	 [102],	 disrupts	 habitats	 [90],	
contaminates	the	environment	with	mercury	[24],	decimates	populations	of	insects	[103],	bats	
[104],	and	birds	[94].	Aerosolized	coal	fly	ash	also	kills	trees	[105,	106],	exacerbates	wildfires	
[107],	 enables	 harmful	 algae	 in	 our	 waters	 [108],	 and,	 as	 described	 here,	 destroys	 the	
stratospheric	ozone	layer	that	shields	surface-life	from	the	sun’s	deadly	ultraviolet	radiation.	
Despite	the	official	narratives	of	“ozone	recovery”	due	to	the	Montreal	Protocol,	stratospheric	
ozone	levels	continue	to	decline	[109].	Ozone	depletion	has	already	led	to	an	alarming	increase	
in	 deadly	 ultraviolet	 radiation	 B	 and	 C	 penetration	 to	 Earth’s	 surface,	 with	 increasingly	
apparent	devastation	to	both	plants	and	animals	[110].	
	
Unless	 global	 populations	 demand	 an	 end	 to	 the	 technologically-based	 assault	 on	 our	
environment,	 replete	 with	 its	 dissemination	 of	 false	 information	 [111],	 we	 will	 inevitably	
continue	to	charge	forward	in	the	first	ever	anthropogenic	species	extinction.	
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